首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Multilayered Ge nanocrystals embedded in SiOxGeNy films have been fabricated on Si substrate by a (Ge + SiO2)/SiOxGeNy superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO2 composite target and subsequent thermal annealing in N2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm−1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the ‘Z’ growth direction.  相似文献   

2.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

3.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

4.
Fe1−xCox alloy microparticles with size 3-5 μm and novel flower-like shapes were prepared by a simple low temperature reduction method. The electromagnetic properties for the paraffin matrix composites containing Fe1−xCox alloy microparticles were measured using a vector network analyzer in the 2-18 GHz frequency range. As a consequence of large surface- and shape-anisotropy energy for the flower-like shaped 3D microstructures, the strong natural resonance around 8-12 GHz and remarkable dielectric relaxation were observed in the complex permittivity and permeability spectrum, which are dominant in the enhanced electromagnetic wave absorption (EMA) performance. It was found that both the electromagnetic parameters of complex permittivity and permeability and the intensity and location of absorption band were remarkably dependent on the Co/Fe molar ratio. The enhanced EMA performance was obtained in these Fe1−xCox-paraffin (x=0.4, 0.5, and 0.6) composites system. For the Fe0.5Co0.5 alloy, the reflection loss (RL) exceeding −20 dB was obtained in the broad frequency range of 5.4-18 GHz with a thin sample thickness of between 1.0 and 2.9 mm. In particular, an optimal RL of −59 dB was obtained at 3.61 GHz with a thin thickness of 3.6 mm for the Fe0.4Co0.6 sample. The Fe1−xCox alloy microparticles may be attractive candidates for applications of microwave absorption materials with a wide frequency range and strong absorption in the high frequency region.  相似文献   

5.
A simple combustion route was employed for the preparation of Eu3+-doped MgAl1.8Y0.2−xO4 nanocrystals using metal nitrates as precursors and urea as a fuel in a preheated furnace at 500 °C. The powders thus obtained were then fired at 1000 °C for 3 h to get better luminescent properties. The incorporation of Eu3+ activator in these nanocrystals was checked by luminescence characteristics. These nanocrystals displayed bright red color on excitation under 254 nm UV source. The main emission peak was assigned to the transition [5D07F2] at 615 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were carried out to understand surface morphological features and the particle size. Crystal structures of the nanocrystals were investigated by the X-ray diffraction (XRD) technique. The crystallite size of the as-prepared nanocrystals was around 29 nm, which was evaluated from the broad XRD peaks. The crystallite size increased to ∼45 nm on further heat treatment at 1000 °C.  相似文献   

6.
We have measured positive exchange bias in a Ni80Fe20/NixFe1−xO thin-film nanocrystallite system. A series of solid solution NixFe1−xO 40 nm thick films capped with 25 nm thick Ni80Fe20 were deposited using a range of %O2/Ar bombardment energies (i.e. End-Hall voltages). Proper tuning of the deposition conditions results in a Ni80Fe20/NixFe1−xO (30%O2/Ar) based bilayer that exhibits a positive exchange bias loop shift of Hex∼60 Oe at 150 K.  相似文献   

7.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

8.
We tried to prepare the bulk dilute ferromagnetic semiconductor (DMS) by mechanical milling (MM). Experimental results were as following: (1) The observation of X-ray diffraction and transmitting electron microscopy showed that the particle diameter of host ZnO powder were reduced to about 10 nm by MM. (2) The MM for the mixtures of V2O5/ZnO or γ-Fe2O3/ZnO realizes the V- or Fe-doped ZnO nano-powders. (3) The values of magnetization under the field of 5 kOe were nearly saturated to 0.8×10−3 to 3×10−3 μB/V-ion for VxZn1−xO (x=0.05, 0.1 and 0.2), and 0.2–0.3 μB/Fe-ion for FexZn1−xO (x=0.05 and 0.1) at room temperature. The above results show that the ferromagnetic DMS powder of VxZn1−xO and FexZn1−xO were successfully prepared by MM method.  相似文献   

9.
Perovskites BaTi1−xFexO3 has been synthesized with the concentration x ranging from 0.01 to 0.02. Their transformation point of ferroelectric to paraelectric and the corresponding latent heat of the phase transformation were observed to decrease with increasing the doping level of Fe3+. Bonded layered composites BaTi1−xFexO3–Tb1−yDyyFe2−z have been fabricated and their magnetoelectric effect has been investigated. The sample containing a layer of perovskite BaTi0.985Fe0.015O3 was found to show the maximum transverse ME voltage coefficient, which is about 1422 mV Oe−1 cm−1 under a magnetic field of 1580 Oe, in these bilayers. Analysis shows that the Fe-doped BaTiO3 with doping level at about 1.5% should have largest piezoelectric coefficient in these ceramics BaTi1−xFexO3.  相似文献   

10.
Ytterbium-doped scandium oxide nanocrystals measuring less than 25 nm with compositions of Sc2−xYbxO3 (x=0.001-1) were prepared using the modified Pechini method. The Yb:Sc2O3 nanocrystals were obtained by calcination at low temperature such as 1073 K for 2 h. X-ray powder diffraction (XRD) and transmission electronic microscopy (TEM) were used to perform the structural characterization of nanocrystals; these studies indicated that the nanocrystals have high crystalline quality with cubic structure and Ia3¯ space group. The morphology and particle size were studied using electron microscopy. A detailed study of the effect of the nanodimension and the ytterbium concentration on the spectroscopic characteristics of Yb3+ as an active ion was carried out in terms of optical absorption, optical emission and fluorescence decay time at room and low temperature.  相似文献   

11.
A new blue-emitting phosphor, Sr1−xPbxZnO2, was prepared by a novel adipic acid templated sol-gel route. Photoluminescence and crystalline properties were investigated as functions of calcination temperatures and the Pb2+ doping levels. It was found that under UV excitation with a wavelength of 283 or 317 nm, the phosphors gave emission from 374 to 615 nm with a peak centered at 451 nm. This broad-band was composed of UV and the visible range was attributed to an impurity-trapped exciton-type emission. The maximum emission intensity of the Sr1−xPbxZnO2 phosphors occurred at a Pb concentration of x=0.01. The decay time was observed to be ∼33 ms for the compound doped with 1 mol% Pb prepared at 1000 °C. Diffuse reflectance spectra revealed the characteristic absorption peaks and the bandgap energy of SrZnO2 was found to be 3.4 eV. SEM analysis indicated that phosphor particles have an irregularly rounded morphology and the average particle size was found to be approximately 1 μm.  相似文献   

12.
Nanocrystalline nickel-zinc ferrite thin films with the general formula Ni1−xZnxFe2O4, where x=0.0, 0.2, 0.4 and 0.6 were fabricated via a chemical route known as the citrate precursor route. These films were spin-deposited on indium-tin oxide coated glass, fused quartz and amorphous Si-wafer substrates, and annealed at various temperatures up to 650 °C. The films annealed below 400 °C were found to be X-ray amorphous, while the films annealed at and above 400 °C were polycrystalline exhibiting a single-phase spinel structure. The average grain size of the films evaluated by transmission electron microscopy, is found to be in the range 4-8.5 nm. The room temperature DC resistivity of the films is in the range 103-107 Ω m. Dielectric constant and dielectric loss were measured in the frequency range 100 Hz-1 MHz. Dielectric constant of the films is found to lie between 25 and 44, while the loss factor is if the order of 10−2. The higher values of the dielectric constant for films having higher zinc concentration are attributable to the enhanced hopping between Fe2+ and Fe3+ ions in these samples. The M-H hysteresis measurement of the nickel ferrite thin films annealed at 650 °C showed narrow hysteresis loop—a characteristic of soft ferromagnetic material.  相似文献   

13.
Ba(1−x)LaxFe12O19 (0.00≤x≤0.10) nanofibers were fabricated via the electrospinning technique followed by heat treatment at different temperatures for 2 h. Various characterization methods including scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and microwave vector network analyzer were employed to investigate the morphologies, crystalline phases, magnetic properties, and complex electromagnetic parameters of nanofibers. The SEM images indicate that samples with various values of x are of a continuous fiber-like morphology with an average diameter of 110±20 nm. The XRD patterns show that the main phase is M-type barium hexaferrite without other impurity phases when calcined at 1100 °C. The VSM results show that coercive force (Hc) decreases first and then increases, while saturation magnetization (Ms) reveals an increase at first and then decreases with La3+ ions content increase. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the M-type barium hexaferrites. The microwave absorption performance of Ba0.95La0.05Fe12O19 nanofibers gets significant improvement: The bandwidth below −10 dB expands from 0 GHz to 12.6 GHz, and the peak value of reflection loss decreases from −9.65 dB to −23.02 dB with the layer thickness of 2.0 mm.  相似文献   

14.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

15.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at % of Ti results in an increase of coercivity from 796 to 1115 kA m−1. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA m−1. Mössbauer investigations shows that for x?1 the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x>1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity decreases due to the presence of an amorphous phase. A heat treatment at a higher temperature (1073 K) for longer time (1 h) results in the full recrystallisation of powders. The mean hyperfine field of the Nd2Fe14B phase decreases for titanium contents of 0?x?1, and remains constant for x>1. This indicates that the Ti content in the Nd2Fe14B phase reaches its maximum value.  相似文献   

16.
Al1−xFexN1−δ thin films with 0 ≤ x ≤ 13.6% were deposited by dc magnetron co-sputtering at room temperature (RT). It is found that Fe atom will substitutes the Al atom in the lattice when x ≤ 1.2%, while it will embed into the interstice of the lattice at larger Fe content. RT ferromagnetism was observed in all doped samples. A maximum saturated magnetization 2.81 emu/cm3 of the film is found to be induced by AlFeN ternary alloy when x = 1.2%.  相似文献   

17.
The crystal structure, band gap energy and bowing parameter of In-rich InxAl1−xN (0.7 < x < 1.0) films grown by magnetron sputtering were investigated. Band gap energies of InxAl1−xN films were obtained from absorption spectra. Band gap tailing due to compositional fluctuation in the films was observed. The band gap of the as-grown InN measured by optical absorption method is 1.34 eV, which is larger than the reported 0.7 eV for pure InN prepared by molecular beam epitaxy (MBE) method. This could be explained by the Burstein-Moss effect under carrier concentration of 1020 cm−3 of our sputtered films. The bowing parameter of 3.68 eV is obtained for our InxAl1−xN film which is consistent with the previous experimental reports and theoretical calculations.  相似文献   

18.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

19.
By increasing the content of Yb3+ ions from 20% to 98% in NaTm0.02YbxY0.98−xF4 (x=0.2−0.98) nanocrystals with size about 10 nm, the intensities of near infrared (800 nm) and blue (470 nm) upconversion (UC) luminescence can be enhanced by orders of 45 and 49 times, respectively, under 970 nm diode laser excitation. Pump power dependence illustrated that the 800 and 470 nm radiations are still two- and three-photon processes, respectively. TEM imaging showed that the enhancement is not from the change of the crystal size. Steady-state equation and the measured lifetimes indicated that the enhanced 800 nm radiations can induce the enhancement of the 470 nm emissions, which is in good agreement with the experimental data.  相似文献   

20.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号