首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Treatment of polluted soil is one of the priorities in the search of a more sustainable planet. Electrochemically assisted soil remediation has been considered a good option for removing organic contaminants contained in soil, including the removal of volatile organic compounds, associated with gaseous streams produced during the treatment. Also, recently, electrochemical gas treatment technologies have been appointed as promising for the treatment of volatile organic compounds. In this work, we review the current opinion about the most recent studies in both areas. The first section focuses on the production of gaseous compounds during soil remediation by conventional and electrochemical systems. The second section describes the recent progress in the integration of adsorption and absorption with electrochemical processes. Finally, we discuss the holistic application of assisted electrochemical technologies in soil remediation, considering also emerging processes recently published in the literature.  相似文献   

2.
The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people’s lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this technique missed sustainability and the new concept of using renewable energy. Permeable reactive barriers (PRBs) have been implemented as an alternative to conventional pump-and-treat systems for remediating polluted groundwater because of their effectiveness and ease of implementation. In this paper, a review of the importance of groundwater, contamination and biological, physical as well as chemical remediation techniques have been discussed. In this review, the principles of the permeable reactive barrier’s use as a remediation technique have been introduced along with commonly used reactive materials and the recent applications of the permeable reactive barrier in the remediation of different contaminants, such as heavy metals, chlorinated solvents and pesticides. This paper also discusses the characteristics of reactive media and contaminants’ uptake mechanisms. Finally, remediation isotherms, the breakthrough curves and kinetic sorption models are also being presented. It has been found that groundwater could be contaminated by different pollutants and must be remediated to fit human, agricultural and industrial needs. The PRB technique is an efficient treatment process that is an inexpensive alternative for the pump-and-treat procedure and represents a promising technique to treat groundwater pollution.  相似文献   

3.
铅污染土壤的修复技术   总被引:22,自引:1,他引:22  
综述了铅对土壤的污染及其修复技术。目前应用于污染土壤的修复技术可分为物理化学修复技术和生物修复技术。物理化学修复技术又可分为隔离包埋技术,固化稳定技术,Pyrometalluryical separation,化学稳定技术,电动修复技术等;生物修复技术可分为微生物修复技术和植物修复技术等。以期进一步推动铅污染土壤的治理和修复工作。  相似文献   

4.
Experimental results, which may serve as basis for innovative applications of cyclodextrins (CDs) in environmental technologies, are presented here. Some newly developed CD-aided tools are used in sampling, measuring the concentration or testing the effect of contaminants in water and soil. The innovative methods such as the bacterial bioassays with CD-increased sensitivity or the CD-filled absorptive samplers for air and water sampling are utilised in environmental exposure, hazard and risk assessment. Technological developments aim the reduction of the risk of chemical substances in waters and soils. CD-aided environmental remediation is introduced through examples for the elimination of organic contaminants from water by CD-filters, and for the enhancement of the mobility and availability of soil contaminants in this way increasing the efficiency of soil remediation by water extraction, chemical oxidation, biodegradation, etc.  相似文献   

5.
Overall, investigations about the utilization of electrokinetic technology alone or in combination with other processes have attracted particular attention in recent years for remediation of soils contaminated with heavy metals and organic compounds. This fact is due to its peculiar benefits together with its capability of operating in a fine and low-permeability matrix. This review aimed to ascertain the most recent developments on the commonly proposed integrated technologies (electrokinetic soil washing, electrokinetics coupled with permeable reactive barriers, electrokinetic-advanced oxidation processes, and bioelectrokinetic remediation), by evaluating the gaps, challenges, and trends of these systems in the last years. Special attention is paid to the current approaches for overcoming the main bottlenecks of electrokinetics concerning scale-up and reduction of electric energy consumption by integration of renewable energies.  相似文献   

6.
Surfactant-enhanced remediation of organic contaminated soil and water   总被引:15,自引:0,他引:15  
Surfactant based remediation technologies for organic contaminated soil and water (groundwater or surface water) is of increasing importance recently. Surfactants are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In fact, among the various available remediation technologies for organic contaminated sites, surfactant based process is one of the most innovative technologies. To enhance the application of surfactant based technologies for remediation of organic contaminated sites, it is very important to have a better understanding of the mechanisms involved in this process. This paper will provide an overview of the recent developments in the area of surfactant enhanced soil and groundwater remediation processes, focusing on (i) surfactant adsorption on soil, (ii) micellar solubilization of organic hydrocarbons, (iii) supersolubilization, (iv) density modified displacement, (v) degradation of organic hydrocarbon in presence surfactants, (vi) partitioning of surfactants onto soil and liquid organic phase, (vii) partitioning of contaminants onto soil, and (viii) removal of organics from soil in presence of surfactants. Surfactant adsorption on soil and/or sediment is an important step in this process as it results in surfactant loss reduced the availability of the surfactants for solubilization. At the same time, adsorbed surfactants will retained in the soil matrix, and may create other environmental problem. The biosurfactants are become promising in this application due to their environmentally friendly nature, nontoxic, low adsorption on to soil, and good solubilization efficiency. Effects of different parameters like the effect of electrolyte, pH, soil mineral and organic content, soil composition etc. on surfactant adsorption are discussed here. Micellar solubilization is also an important step for removal of organic contaminants from the soil matrix, especially for low aqueous solubility organic contaminants. Influences of different parameters such as single and mixed surfactant system, hydrophilic and hydrophobic chain length, HLB value, temperature, electrolyte, surfactant type that are very important in micellar solubilization are reviewed here. Microemulsion systems show higher capacity of organic hydrocarbons solubilization than the normal micellar system. In the case of biodegradation of organic hydrocarbons, the rate is very slow due to low water solubility and dissolution rate but the presence of surfactants may increase the bioavailability of hydrophobic compounds by solubilization and hence increases the degradation rate. In some cases the presence of it also reduces the rate. In addition to fundamental studies, some laboratory and field studies on removal of organics from contaminated soil are also reviewed to show the applicability of this technology.  相似文献   

7.
As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.  相似文献   

8.
近年来我国的土壤污染问题日益严重,严重危害着人类的生活环境与身体健康,其中主要的有机污染物之一为多环芳烃(PAHs)。PAHs作为一种持久性有机污染物在全球范围内广泛存在,其主要污染来源于人为因素。由于PAHs复杂的杂环芳环结构、较强的疏水性和较高的热稳定性等,使其在土壤中不易自然降解因而具有较高的持久性。本文综述PAHs的主要污染来源、暴露途径及其对人体的危害,并从物理、化学和生物三个方面简要介绍土壤中PAHs的修复方法,并分析每种方法的优势以及面临的挑战。新兴的修复技术结合三种修复技术的优点,具有更好的修复效果和应用前景,但仍存在着一些亟待解决的问题。期望本文能为土壤中PAHs的修复提供借鉴,并为今后的研究方向提供新的思路。  相似文献   

9.
张强  刘彬  刘巍  徐圣  张斌 《化学通报》2014,77(4):328-332
污染土壤的修复治理过程中,物化技术以其快速高效的特点成为国内外研究的热点。本文通过对工程措施、玻璃化技术、热修复、电动力修复、光化学降解、化学淋洗、化学固定/稳定化、化学氧化以及联合修复等常见土壤物化治理技术进行了分析,探讨了各种工艺技术的性能及优缺点,旨在为我国土壤污染修复治理技术的选择提供参考。  相似文献   

10.
在对比了几种修复锑污染土壤的方法后,发现固化/稳定化技术是一种成熟有效的处理方法,该技术具有快速、彻底、经济的优点,但存在固化后的锑易被二次活化、后期监测困难、固化后土壤难以二次利用等问题。同时对不同的固化剂、稳定化剂的作用原理进行总结,概述了水泥、石灰/粉煤灰、药剂类对最终修复效果的影响,分析了在土壤理化性质、环境因素影响下锑的再活化行为,提出了应选择高效的试剂、将其与其他修复技术联合使用的研究方向。  相似文献   

11.
In this study, the remediation performance of electrokinetic (EK) technology integrated with different surfactants for removing phenanthrene from unsaturated soils was investigated. A synthetic surfactant (Triton X-100) and a biosurfactant (rhamnolipid) were used to enhance phenanthrene solubility and removal efficiency during EK process. Results indicate that the electro-osmotic flow (EOF) rate in the rhamnolipid system is higher than that in Triton X-100. Using the EK technology for the removal of phenanthrene in the presence of rhamnolipid was more efficient than in the presence of Triton X-100. In addition to the transport mechanism of phenanthrene in EK system, the presence of rhamnolipid may promote microbial growth in the soil–water system and bring about biodegradation of phenanthrene. A diffusion–advection–sorption (DAS) model was solved by MATLAB, based on the linear sorption isotherm at the non-equilibrium condition, which is feasible to simulate the movement of phenanthrene during the EK + Triton X-100 treatment.  相似文献   

12.
Analytical techniques for the detection of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo(5.5.0.05,9.03,11)dodecane (CL-20) in water and soil are developed by adapting methods traditionally used for the analysis of nitroaromatics. CL-20 (a new explosives compound) is thermally labile, exhibits high polarity, and has low solubility in water. These constraints make the use of specialized sample handling, preparation, extraction, and analysis necessary. The ability to determine the concentrations of this new explosive compound in environmental matrices is helpful in understanding the environmental fate and effects of CL-20; understanding the physical, chemical, and biological fate of CL-20; and can be used in developing remediation technologies and determining their efficiency. The toxicity and mobility of new explosives in soil and groundwater are also of interest, and analytical techniques for quantitating CL-20 and its degradation products in soil and natural waters make these investigations possible.  相似文献   

13.
Small molecule contaminants pose a significant threat to the environment and human health. While regulations are in place for allowed limits in many countries, detection and remediation of contaminants in more resource-limited settings and everyday environmental sources remains a challenge. Functional nucleic acids, including aptamers and DNA enzymes, have emerged as powerful options for addressing this challenge due to their ability to non-covalently interact with small molecule targets. The goal of this perspective is to outline recent efforts toward the selection of aptamers for small molecules and describe their subsequent implementation for environmental applications. Finally, we provide an outlook that addresses barriers that hinder these technologies from being widely adopted in field friendly settings and propose a path forward toward addressing these challenges.

Small molecule contaminants pose a significant threat to the environment and human health.  相似文献   

14.
15.
土壤的植物修复与超积累植物研究   总被引:12,自引:0,他引:12  
被污染土壤的植物修复将是未来更好与更廉价的修复技术,所以近年来对植物修复与超积累植物的研究兴趣日益增加。本文简要介绍了近期的发展趋势。目前研究的重点包括根际土壤微环境中的复杂反应与吸收过程,金属从土壤向植物根以及从植物根向叶的传输过程,金属在超积累植物中的定位与螯合作用等等。这是分析化学与环境科学及植物科学交叉研究的新领域,充满挑战。  相似文献   

16.
土壤中砷形态分析研究进展   总被引:1,自引:0,他引:1  
本文评述了近年来国内外土壤中砷形态分析的主要研究方法,包括联用分析法、分级提取法和同步辐射X-射线线吸收光谱法。联用分析法包括气相色谱联用法、毛细管电泳联用法和高效液相色谱联用法。重点介绍了目前应用范围较广的高效液相色谱-等离子体质谱(HPLC-ICP-MS)联用法和高效液相色谱-氢化物发生-原子荧光光谱(HPLC-HG-AFS)联用法。同步辐射X-射线线吸收光谱法近几年发展迅速,是最具发展潜力的形态分析方法。  相似文献   

17.
Electrokinetic treatments such as the electrophoretic technique have been applied successfully to various soil remediation and contaminant removal situations. To understand further the fundamental features involved, the electrophoretic motion of a charged particle in porous media is investigated theoretically in this study, focusing on the boundary effect of a nearby solid plane toward which the particle moves perpendicularly. The porous medium is modeled as a Brinkman fluid with a characteristic screening length (λ(-1)) that can be obtained directly from the experimental data. General electrokinetic equations are used to describe the system and are solved with a pseudospectral method based on Chebyshev polynomials. We found that the particle motion is deterred by the boundary effect in general. The closer the particle is to the boundary, the more severe this effect is. Up to a 90% reduction in particle mobility is observed in some situations. This indicates that a drastic overestimation (10-fold!) of the overall transport rate of particles may occur for large-scale in situ operations in porous media, such as soil remediation utilizing large planar electrodes, should a portable analytical formula valid for bulk systems only be used. Correction factors for various situations in porous media are presented as convenient charts with which to aid engineers and researchers in the field of environmental engineering, for instance, as a realistic estimation of the actual transport rate obtainable. In addition, the results of present study can be applied to biomedical engineering and drug delivery as well because polymer gels and skin barriers both have a porous essence.  相似文献   

18.
Synthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature. To mitigate environmental and public health related issues, different techniques of dye remediation have been widely investigated. However, efficient and cost-effective methods of dye removal have not been fully established yet. This paper highlights and presents a review of recent literature on the utilization of the most widely available biopolymers, specifically, cellulose, chitin and chitosan-based products for dye removal. The focus has been limited to the three most widely explored technologies: adsorption, advanced oxidation processes and membrane filtration. Due to their high efficiency in dye removal coupled with environmental benignity, scalability, low cost and non-toxicity, biopolymer-based dye removal technologies have the potential to become sustainable alternatives for the remediation of industrial dye effluents as well as contaminated water bodies.  相似文献   

19.
This minireview summarized the recent progress of converting the typical classes of large-scale aluminosilicates into zeolite materials for environmental remediation. The representative zeolite structures that can be directly converted from large-scale aluminosilicates via green chemistry approaches are addressed. The environmental remediation mechanisms on employing these zeolites for environmental remediation have been recapped. The present research gap and future research perspectives under carbon-neutral pressure via green chemistry principle on this topic are also discussed.  相似文献   

20.
Metal–organic-frameworks (MOFs) are emerging materials used in the environmental electrochemistry community for Faradaic and non-Faradaic water remediation technologies. It has been concluded that MOF-based materials show improvement in performance compared to traditional (non-)faradaic materials. In particular, this review outlines MOF synthesis and their application in the fields of electron- and photoelectron-Fenton degradation reactions, photoelectrocatalytic degradations, and capacitive deionization physical separations. This work overviews the main electrode materials used for the different environmental remediation processes, discusses the main performance enhancements achieved via the utilization of MOFs compared to traditional materials, and provides perspective and insights for the further development of the utilization of MOF-derived materials in electrified water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号