首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
光子晶体是人造的周期性结构材料。作为一种复合材料,各组份的介电性质及其空间排列方式决定了光子晶体具有独特的光带隙性能。光子晶体受力变形后必然会改变各组份的空间排列方式,从而改变其光带隙性能。本文利用数值方法模拟了一维光子晶体承受正应变时对其光带隙性能的影响,发现应变的大小与禁带起始波长及截止波长之间存在简单的线性关系。既通过测量光子晶体的光带隙性能就可以得知应变的大小,从而验证了制造光子晶体应变片的可行性。这种应变片的优点是不需要导线相联,而且没有活动部件。  相似文献   

2.
拓扑绝缘体起源于量子波动系统,因其单向传输、能量无耗散等新奇物理性质,近年逐渐被拓展到电磁波、声波、弹性波等经典波动领域,为经典波的调控提供了新思路.本文将系统介绍拓扑绝缘体理论及其在弹性波领域的相关研究进展.首先以一维、二维离散点阵系统为例,阐释拓扑物理研究中的基本数学、物理概念,如狄拉克锥、能带翻转、贝里曲率、拓扑...  相似文献   

3.
平面膜结构拓扑优化的有无复合体方法   总被引:18,自引:3,他引:18  
隋允康  于新 《力学学报》2001,33(3):357-364
将作者对桁架在应力约束下结构拓扑优化的有无复合体模型发展到平面膜结构在应力、位移约束下结构拓扑优化的建模与求解。同时提出了该模型的有效解法,获得了令人满意的数值结果。本文工作表明独立连续拓扑变量的提出对于结构拓扑优化的研究是有意义的。  相似文献   

4.
应力和位移约束下桁架拓扑优化的有无复合体方法   总被引:5,自引:1,他引:4  
按照独立连续拓扑变量的思想,将有无复合体模型由构造应力约束问题发展为应力与位移约束问题,用于桁架结构拓扑优化.基于该文提出的位移约束与拓扑变量关系的近似显式,建立了具有应力、位移约束下桁架结构拓扑优化的有无复合体模型,用序列二次规划算法求解.数值结果令人满意.这一工作表明独立连续拓扑变量的提出对于结构拓扑优化的研究是有价值的。  相似文献   

5.
拓扑互锁结构是一种通过具有特殊形状的元素(块)彼此啮合拼接组成的整体结构,具有很好的增韧和抗冲击特性.目前对拓扑互锁结构的静荷载分析研究逐渐成熟,而对冲击条件下结构的强度、稳定性等性能分析以及对结构吸能性能的定量分析尚有发展空间;另外,对影响拓扑互锁结构力学性能的因素、结构设计优化等研究也有待完善.本文选择四面体元素拓扑互锁结构,通过ABAQUS有限元仿真软件对其进行冲击试验仿真,得出拓扑互锁结构在冲击作用下的变形机制,探索了元素互锁角度、元素间摩擦对冲击性能的影响;指出结构被冲穿的决定因素为冲击能量而非冲击速度;最后研究了局部榫卯对结构力学性能的影响.结果验证了拓扑互锁结构较好的缓冲吸能特性,同时表明拓扑互锁结构的力学性能是各个因素综合作用的结果,实际应用中可以根据使用场景和功能需求等对拓扑互锁元素进行调整优化.  相似文献   

6.
The topological derivative represents the first term of the asymptotic expansion of a given shape functional with respect to the small parameter which measures the size of singular domain perturbations. The topological derivative has been successfully applied in the treatment of problems such as topology optimization, inverse analysis and image processing. In this paper, the calculation of the topological derivative for a general class of shape functionals is presented. In particular, we evaluate the topological derivative of a modified energy shape functional associated to the steady-state heat conduction problem, considering the nucleation of a small circular inclusion as the topological perturbation. Several methods were proposed to calculate the topological derivative. In this paper, the so-called topological-shape sensitivity method is extended to deal with a modified adjoint method, leading to an alternative approach to calculate the topological derivative based on shape sensitivity analysis together with a modified Lagrangian method. Since we are dealing with a general class of shape functionals, which are not necessarily associated to the energy, we will show that this new approach simplifies the most delicate step of the topological derivative calculation, namely, the asymptotic analysis of the adjoint state.  相似文献   

7.
A critical pattern of crossflow around a slender   总被引:1,自引:0,他引:1  
IntroductionModernhigh_performancefightersoftenrequiretobeoperatedunderafairlylargeangleofattacksoastoachieveexcellentmaneuverabilityandagility .Atsuchlargeangleofattack ,asymmetricallee_sidevortexflowwillformatthefrontpartofthefuselage .Sothatsuchagreats…  相似文献   

8.
The photonic band structure and optical transmittance of two-dimensional periodic elastomeric photonic crystals are studied computationally to understand the effects of large strains on optical properties of the structures. The large compressive deformation patterns of the two-dimensional periodic structure studied by Mullin and coworkers [Mullin, T., Deschanel, S., Bertoldi, K., Boyce, M.C., 2007. Pattern transformation triggered by deformation. Physical Review Letters 99(8), 084301] are first reproduced using hyperelastic material models for the elastomer SU-8. Finite element analysis is then used to solve Maxwell's equations to obtain light transmittance through both the undeformed and deformed structures; simultaneously the wave equation resulting from the appropriate two-dimensional form of Maxwell's equations is solved as an eigenvalue problem to obtain the band structure. The deformation-induced shift in transmission spectrum valleys for different bands is calculated, and the changes in the width of these reflectance peaks are also obtained. The band structure calculation shows that there are no complete photonic band gaps as expected for the low dielectric contrast system. However, the effect of the observed reversible, symmetry-breaking deformation pattern is to uncouple many of the photonic bands in all three high symmetry directions, i.e. Γ–X, X–M, and Γ–M. New non-degenerate deformation-induced optical modes appear in both the real space transmittance spectra and the band structure with lower reflectance values. Analyses of the deformation pattern, the optical mode shapes, and the photonic band structure reveal that localized regions of large rotation are responsible for the significant changes in optical transmittance. The results have practical importance for the design of strain-tunable optomechanical materials for sensing and actuation.  相似文献   

9.
The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.  相似文献   

10.
在波动周期结构中,六边形单胞是常见的具有动态拓扑性质的重复单元。本文设计了具有主动控制特性的六边形单胞,通过粘贴压电片并连接负电容电路对材料参数进行调控,实现了弯曲波拓扑交界态传输与缺陷保护特性的主动控制,并发现了该保护行为具有方向选择特性。上述工作将物理学与声学中拓扑态概念引入到弹性波超材料板中,从而实现了其中弯曲波拓扑传输的主动控制功能。  相似文献   

11.
The topological derivative provides the sensitivity of a given cost function with respect to the insertion of a hole at an arbitrary point of the domain. Classically, this derivative comes from the second term of the topological asymptotic expansion, dealing only with infinitesimal holes. However, for practical applications, we need to insert holes of finite size. Therefore, we consider one more term in the expansion which is defined as the second order topological derivative. In order to present these ideas, in this work we apply the topological-shape sensitivity method as a systematic approach to calculate first as well as second order topological derivative for the Poisson’s equations, taking the total potential energy as cost function and the state equation as constraint. Furthermore, we also study the effects of different boundary conditions on the hole: Neumann and Dirichlet (both homogeneous). Finally, we present some numerical experiments showing the influence of the second order topological derivative in the topological asymptotic expansion, which has two main features: it allows us to deal with hole of finite size and provides a better descent direction in optimization process.  相似文献   

12.
The present work tackled the modeling of frame structures using a topological approach based on the concepts of topological collections and transformations. The topological collections are used to specify the interconnection law between the frame structures and the transformations that are used to describe their behavior. As a language allowing the application of this approach, we applied the MGS (Modeling of General System) language. To validate this approach, we studied the case of two- and three-dimensional frame structures. Then, the results obtained using the MGS language are presented and compared to those obtained by the structural calculation software by the finite-element method RDM6. For both studied cases, we find that the results obtained by MGS language based on the notions of topological collections and transformations and those obtained by the RDM6 software based on the finite element method are very close, which validates our approach. Using this topological approach, any structure can be characterized by local relations between its elements, thus making it possible to dissociate its topology and its physics. Indeed, in our topological approach, we separately define the topology of the studied frame structure and the local behavior law as well as the equilibrium equations of its various components. Therefore, this topological approach might be generalized to model complex systems which can be considered as a set of local elements linked by a neighborhood relationship.  相似文献   

13.
剪胀性是包括岩土材料在内的摩擦性颗粒材料的重要特征之一,其形成机制与颗粒体系内部拓扑结构的演化有关.基于颗粒体系细观数据,可对颗粒体系内部的拓扑结构特征及演化进行分析,进而建立拓扑演化与宏观剪胀变形之间的联系.采用离散单元法,根据密实、中密和松散摩擦性颗粒材料双轴试验的宏微观数据,从拓扑参量演化及接触网络拓扑变化所引起...  相似文献   

14.
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations. The project supported by State Key Laboratory of Structural Analyses of Industrial Equipment  相似文献   

15.
根据独立连续拓扑变量概念,建立了桁架和平面膜结构拓扑优化的有无复合体模型,从而不引入过滤函数实现拓扑变量在连续型和离散型之间的转换,推导了有无复合体杆单元的面积与膜单元的厚度与重量、单元刚度阵都是“有单元”和“无单元”相应量的线性组合,进而把这一线性关系延拓到许用应力,借助于有无复合体建立了在应力约束下骨架和连续体结构拓扑优化的统一模型,同时提出了求解这一模型的有效算法,获得了令人满意的计算结果。  相似文献   

16.
基于遗传算法的复合材料细观结构拓扑优化设计   总被引:2,自引:0,他引:2  
利用高精度通用单胞模型将复合材料的细观拓扑结构与宏观力学性能结合起来,采用遗传算法对复合材料的细观结构进行优化,发展了基于遗传算法的复合材料细观结构拓扑优化设计方法.以材料的宏观力学性能为优化目标,从随机的初始细观结构出发,对复合材料纤维体积百分比进行约束,经过迭代获得满足设计要求的代表性体积单元.在优化过程中,对遗传算法的交叉过程作了较大的改进,实现了复合材料细观拓扑结构的任意变化,提高了对可行域的搜索效率.分别以极限剪切模量和泊松比为优化目标,验证了所提出优化方法的正确性和有效性.  相似文献   

17.
The study of chaos has generated enormous interest in exploring the complexity of the behavior in nature and in technology. Many of the important features of chaotic dynamical systems can be seen using experimental and computational methods in simple nonlinear mechanical systems or electronic circuits. Starting with the study of a chaotic nonlinear mechanical system (driven damped pendulum) or a nonlinear electronic system (circuit Chua) we introduce the reader into the concepts of chaos order in Sharkovsky's sense, and topological invariants (topological entropy and topological frequencies). The Kirchhoff's circuit laws are a pair of laws that deal with the conservation of charge and energy in electric circuits, and the algebraic theory of graphs characterizes these linear systems in terms of cycles and cocycles (or cuts). Here we discuss methods (topological semiconjugacy to piecewise linear maps and Markov graphs) to find a similar situation for the nonlinear dynamics, to understanding chaotic dynamics. Thus to chaotic dynamics we associate a Markov graph, where the dynamical and topological invariants will be seen as graph theoretical quantities.  相似文献   

18.
Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures.The project supported by the National Natural Science Foundation of China (10472003) and Beijing Natural Science Foundation (3042002) The English text was polished by Yunming Chen.  相似文献   

19.
Based on the kinematic viewpoint, the concept of proportional movement is abstracted to explain the strange behaviors of fractal snowflakes. A transformation group for proportional movement is defined. Under the proportional movement transformation groups, necessary and sufficient conditions for self-similarity of multilevel structures are presented. The characteristic topology of snowflake-like fractal patterns, identical to the topology of ternary-segment fractal line, is proved. Moreover, the topological evolution of N-segment line is explored. The concepts of limit growth and infinite growth are clarified,and the corresponding growth conditions are derived. The topological invariant properties of N-segment line are exposed. In addition, the proposition that the topological evolution of the N-segment line is mainly controlled by the topological invariant N is verified.  相似文献   

20.
对连续体结构的拓扑优化,给出一种工程实用方法:将拓扑优化分两步进行,首先解决在弹性体内哪些区域需要删除的问题,然后再确定删除区的边界,这种方法适用于各种约束条件的问题,而且拓扑清晰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号