首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous rechargeable multivalent metal-ion batteries (ARMMBs) have attracted considerable attention due to their high capacity, high energy density, and low cost. However, their performance is often limited by low temperature operation, which requires the development of anti-freezing electrolytes. In this review, we summarize the anti-freezing mechanisms and optimization strategies of anti-freezing electrolytes for aqueous batteries (especially for Zn-ion batteries). Besides, we investigate the possible interactions and side reactions between electrolytes and electrodes. We also analyze the problems between electrolytes and electrodes at low temperature, and propose possible solutions. The research progress in the field of low temperature energy storage for aqueous Mg-ion, Ca-ion, and Al-ion batteries, and the challenges faced in their anti-freezing electrolytes are investigated in detail. Last but not least, the outlook on the energy storage applications of ARMMBs is provided to guide the future research.  相似文献   

2.
Aqueous Zn-ion batteries (AZIBs) are considered as promising large-scale energy storage devices due to their high safety and low cost. Transition metal dichalcogenides (TMDs) as the potential aqueous Zn-storage cathode materials are under the research spotlight because of their facile 2D ion-transport channels and weak electrostatic interactions with Zn2+. In this concept article, we summarize the intrinsic structural features and aqueous Zn-storage mechanisms of the TMDs-based electrodes. More significantly, the latest design concepts of TMDs materials for high-performance AZIBs are discussed in detail from three aspects of interlayer expansion engineering, phase transition engineering, and structure defects engineering. Finally, the current challenges facing TMDs cathodes and possible remedies are outlined for future developments towards efficient, rapid, and stable aqueous Zn-ion storage.  相似文献   

3.
气候变化和化石燃料枯竭等问题将促进新型绿色能源的开发和利用。因此,高效率、低成本、安全的储能系统,得到了越来越多的关注和研究。在各类储能系统中,二次电池是存储电能、为电子设备供电的最理想选择。目前,锂离子电池(LIBs)的应用最广泛。然而,地球上锂资源的短缺和分布不均造成的成本较高,急需研究和开发其他高性能的新型二次电池。钠元素具有地壳中储量丰富、均匀且与锂具有相似化学性质等优势,使得钠离子电池(SIBs)成为了取代LIBs最有前景的备选二次电池之一。然而,钠离子的体积较大、离子传导动力学更缓慢、导电性更差等问题,限制了SIBs高性能的实现,这是目前研究的难点和重点。此外,铁具有储量丰富、环境友好的特点,其在SIBs中的应用引起了电池领域科研工作者的广泛关注。因此,寻找良好的铁基正极材料成为SIBs高性能电极材料开发的一个重要研究方向。本综述对近年来SIBs铁基正极材料方面的研究进展进行了总结,并按照聚阴离子型化合物、过渡金属氧化物、普鲁士蓝及类似物和氟化物分类,进行了系统的阐述和分析。  相似文献   

4.
The development of zinc batteries with advantages of high safety, low cost, and environmental friendliness is energetic in recent years because of the increasing requirement on large-scale energy storage systems for integrating renewable energy in the power grid. However, there are still significant challenges in the way of commercialization of aqueous zinc batteries, such as parasitic reaction, zinc dendrite, and structure collapse and dissolution of cathode materials. This review summarizes the Zn2+ storage mechanism of cathode materials and the challenges in front of electrode materials and aqueous electrolyte. Meanwhile, corresponding solutions and points that should be paid attention for commercialization are discussed.  相似文献   

5.
《中国化学快报》2023,34(6):107669
Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, the pursuing of high-performance cathode materials of aqueous Zinc ion batteries (AZBs) with low cost, high energy density and long cycle life has become the key problem to be solved. Herein we synthesized a series of amorphous nickel borate (AM-NiBO) nanosheets by varying corrosion time with in-situ electrochemical corrosion method. The AM-NiBO-T13 as electrode material possesses a high areal capacity of 0.65 mAh/cm2 with the capacity retention of 95.1% after 2000 cycles. In addition, the assembled AM-NiBO-T13//Zn provides high energy density (0.77 mWh/cm2 at 1.76 mW/cm2). The high areal capacity and better cycling performance can be owing to the amorphous nanosheets structure and the stable coordination characteristics of boron and oxygen in borate materials. It shows that amorphous nickel borate nanosheets have great prospects in the field of energy storage.  相似文献   

6.
Rechargeable aqueous batteries are promising energy storage devices because of their high safety and low cost. However, their energy densities are generally unsatisfactory due to the limited capacities of ion-inserted electrode materials, prohibiting their widespread applications. Herein, a high-energy aqueous all-sulfur battery was constructed via matching S/Cu2S and S/CaSx redox couples. In such batteries, both cathodes and anodes undergo the conversion reaction between sulfur/metal sulfides redox couples, which display high specific capacities and rational electrode potential difference. Furthermore, during the charge/discharge process, the simultaneous redox of Cu2+ ion charge-carriers also takes place and contributes to a more two-electron transfer, which doubles the capacity of cathodes. As a result, the assembled aqueous all-sulfur batteries deliver a high discharge capacity of 447 mAh g−1 based on total mass of sulfur in cathode and anode at 0.1 A g−1, contributing to an enhanced energy density of 393 Wh kg−1. This work will widen the scope for the design of high-energy aqueous batteries.  相似文献   

7.
The challenging requirements of high safety, low-cost, all-climate and long lifespan restrict most battery technologies for grid-scale energy storage. Historically, owing to stable electrode reactions and robust battery chemistry, aqueous nickel–hydrogen gas (Ni–H2) batteries with outstanding durability and safety have been served in aerospace and satellite systems for over three decades ever since their first development in the 1970s. Despite their satisfactory performances, this technology has difficulty to be applied for grid-scale energy storage primarily because of their high cost resulting from the utilization of expensive platinum as anode hydrogen catalyst. In recent years, with the extensive exploration of inexpensive hydrogen evolution/oxidation reaction catalysts, advanced Ni–H2 batteries have been revived as promising battery chemistry for grid-scale energy storage applications. This mini-review provides an overview of the development activities of Ni–H2 batteries and highlights the recent advances in the application of advanced Ni–H2 batteries for grid-scale energy storage. New cost-effective hydrogen evolution/oxidation reactions catalysts, novel cathode materials, and advanced Ni–H2 battery designs toward further development of Ni–H2 batteries are discussed. The renaissance of advanced Ni–H2 battery technology is particularly attractive for future grid-scale energy storage applications.  相似文献   

8.
If were not by their low electrochemical stability, aqueous electrolytes would be the preferred alternative to be used in electrochemical energy storage devices. Their abundance and nontoxicity are key factors for such application, especially in large scale. The development of highly concentrated aqueous electrolytes, so-called water-in-salt electrolytes, has expanded the electrochemical window of aqueous electrolyte up to 3.0 V (whereas salt-in-water electrolytes normally shows up to 1.6 V), showing that water can be an alternative after all. Many devices, ranging from metal-ion batteries to electrochemical capacitors, have been reported recently, making use of such wider electrochemical stability and enhancing devices energy density. Different salts have also been proposed not only to gain in costs but also to improve physicochemical properties.  相似文献   

9.
Aqueous zinc‐ion batteries (ZIBs) are considered promising energy storage devices for large‐scale energy storage systems as a consequence of their safety benefits and low cost. In recent years, various vanadium‐based compounds have been widely developed to serve as the cathodes of aqueous ZIBs because of their low cost and high theoretical capacity. Furthermore, different energy storage mechanisms are observed in ZIBs based on vanadium‐based cathodes. In this Minireview, we present a comprehensive overview of the energy storage mechanisms and structural features of various vanadium‐based cathodes in ZIBs. Furthermore, we discuss strategies for improving the electrochemical performance of vanadium‐based cathodes; including, insertion of metal ions, adjustment of structural water, selection of conductive additives, and optimization of electrolytes. Finally, this Minireview offers insight into potential future directions in the design of innovative vanadium‐based electrode materials.  相似文献   

10.
Prussian blue analogues (PBAs) have been regarded as promising cathode materials for alkali-ion batteries owing to their high theoretical energy density and low cost. However, the high water and vacancy content of PBAs lower their energy density and bring safety issues, impeding their large-scale application. Herein, a facile “potassium-ions assisted” strategy is proposed to synthesize highly crystallized PBAs. By manipulating the dominant crystal plane and suppressing vacancies, the as-prepared PBAs exhibit increased redox potential resulting in high energy density up to ≈450 Wh kg−1, which is at the same level of the well-known LiFePO4 cathodes for lithium-ion batteries. Remarkably, unconventional highly-reversible phase evolution and redox-active pairs were identified by multiple in situ techniques for the first time. The preferred guest-ion storage sites and migration mechanism were systematically analysed through theoretical calculations. We believe these results could inspire the design of safe with high energy density.  相似文献   

11.
Environmental pollution and the energy crisis have promoted the development of clean energy as well as new-generation energy storage systems. Potassium ion batteries (PIBs) have emerged as a possible alternative to lithium-ion batteries due to their abundant reserves, low cost, and impressive electrochemical performance. However, the search for suitable cathode materials has become particularly crucial. Recently, Prussian blue (PB) has been investigated as a potential cathode material for PIBs, which has an open three-dimensional framework to accommodate a large volume of potassium ions and adjustable composition for different applications. In this review, Prussian blue and its analogues (PBAs) and their application in PIBs were summarized detailly. We presented the composition, structure, potassium ion storage mechanism, preparation process of PBAs, and then focus on the performance optimization methods of the PBAs, including transition metal doping and conductive material adding into PBAs. Finally, the challenges as well as the outlook on the future development of PBAs were proposed for further application in this battery system.  相似文献   

12.
近年来,钠离子电池因其原材料丰富、资源成本低廉及安全环保等突出优点,在电化学规模储能领域和低速电动车中具有广阔的应用前景。聚阴离子型磷酸盐具有稳定的框架结构、合适的工作电压和快速的离子扩散路径等特征,是一类极具研究价值和应用前景的钠离子电池正极材料。但是,磷酸盐正极材料电子导电性差和比能量偏低等缺陷限制了其走向实际应用。研究工作者通过体相结构调控和微纳结构设计等手段进行改性研究,旨在提升磷酸盐正极材料的性能表现、推动钠离子储能体系的研究开发。本文综述了钠离子电池磷酸盐正极材料的最新进展,包括正磷酸盐、焦磷酸盐、氟磷酸盐和混合磷酸盐化合物,通过对磷酸盐材料的晶体结构、储钠机理和改性策略等方面的综述,揭示材料成分、结构与电化学性能之间的本征关系,为聚阴离子磷酸盐正极材料的持续改性和新型磷酸盐高压正极材料的探索开发提供指导。  相似文献   

13.
Rechargeable aqueous zinc-ion batteries are attractive because of their inherent safety, low cost, and high energy density. However, viable cathode materials (such as vanadium oxides) suffer from strong Coulombic ion–lattice interactions with divalent Zn2+, thereby limiting stability when cycled at a high charge/discharge depth with high capacity. A synthetic strategy is reported for an oxygen-deficient vanadium oxide cathode in which facilitated Zn2+ reaction kinetic enhance capacity and Zn2+ pathways for high reversibility. The benefits for the robust cathode are evident in its performance metrics; the aqueous Zn battery shows an unprecedented stability over 200 cycles with a high specific capacity of approximately 400 mAh g−1, achieving 95 % utilization of its theoretical capacity, and a long cycle life up to 2 000 cycles at a high cathode utilization efficiency of 67 %. This work opens up a new avenue for synthesis of novel cathode materials with an oxygen-deficient structure for use in advanced batteries.  相似文献   

14.
Rechargeable aqueous zinc‐ion batteries are attractive because of their inherent safety, low cost, and high energy density. However, viable cathode materials (such as vanadium oxides) suffer from strong Coulombic ion–lattice interactions with divalent Zn2+, thereby limiting stability when cycled at a high charge/discharge depth with high capacity. A synthetic strategy is reported for an oxygen‐deficient vanadium oxide cathode in which facilitated Zn2+ reaction kinetic enhance capacity and Zn2+ pathways for high reversibility. The benefits for the robust cathode are evident in its performance metrics; the aqueous Zn battery shows an unprecedented stability over 200 cycles with a high specific capacity of approximately 400 mAh g?1, achieving 95 % utilization of its theoretical capacity, and a long cycle life up to 2 000 cycles at a high cathode utilization efficiency of 67 %. This work opens up a new avenue for synthesis of novel cathode materials with an oxygen‐deficient structure for use in advanced batteries.  相似文献   

15.
The synthesis of mesoporous Prussian blue analogues through a template‐free methodology and the application of these mesoporous materials as high‐performance cathode materials in sodium‐ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium‐ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g?1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low‐cost alternative to hard or soft templating for the fabrication of mesoporous materials.  相似文献   

16.
高安全、低成本、长寿命的大规模储能新技术的突破事关未来能源结构调整以及智能电网建设。可充锌电池由于其安全性高、环境友好、成本低等优势而成为将来储能系统的重要选择。然而,常规水系电解液的应用通常导致正极活性物质溶解、水溶剂分解、锌负极腐蚀、枝晶等问题。因此,本文对水系电解质(液)体系导致的问题及相应的调控方案进行了讨论与总结。主要从电解质(液)改性角度分析了通过调控组成成分、浓度、添加剂等变量以达到改变自由水含量和锌离子溶剂化结构的目的。另外,对可充电锌电池这一新兴技术实现应用所面临的挑战进行了总结与展望。  相似文献   

17.
先进储能系统的开发对于满足电动汽车、便携式设备和可再生能源存储不断增长的需求至关重要. 锂硫(Li-S)电池具有比能量高、原材料成本低和环境友好等优点,是新型高性能电池研究领域中的热点. 然而,锂硫电池面向实际应用还存在许多问题,如可溶性多硫化物中间体的穿梭效应、锂枝晶生长以及锂硫电池在使用过程中的热稳定性和安全性等. 设计开发多功能涂层隔膜是改善锂硫电池上述不足的有效策略之一,在本综述中,详细论述了锂硫电池多功能涂层隔膜的研究进展. 包括聚合物材料、碳材料、氧化物材料、催化纳米粒子改性的功能化涂层隔膜及增强电池热稳定性、安全性的特种功能隔膜,对其作用特性进行了系统分析,并对未来研究发展提出展望.  相似文献   

18.
Aqueous zinc-ion batteries(AZIBs) have aroused significant research interest around the world in the past decade. The use of low-cost aqueous electrolytes and a metallic Zn anode with a suitable redox potential and high energy density make AZIBs a potential alternative to commercial Li-ion batteries in the development of next-generation batteries. However, owing to the narrow electrochemical stability window(ESW) of aqueous electrolytes, the choice of cathode materials is limited, because of whi...  相似文献   

19.
As concerns about the safety of lithium-ions batteries (LIBs) increases, aqueous zinc-ion batteries (ZIBs) with a lower cost, higher safety, and higher co-efficiency have attracted more and more interest. However, finding suitable cathode materials is still an urgent problem in ZIBs. In recent years, a lot of significant works have been reported, including manganese-based cathodes, vanadium-based cathodes, Prussian blue analog-based materials, and sustainable quinone cathodes. In this review, some typical cathode materials are introduced. The detailed storage mechanisms and methods for improving the reaction kinetics of the zinc ions are summarized. Finally, the issues, challenges, and the research directions are provided.  相似文献   

20.
惠康龙  傅继澎  高湉  唐明学 《应用化学》2020,37(12):1384-1402
低成本、长寿命、高安全性、高性能且易于大规模生产的锂/钠离子电池已被证实为重要的二次储能设备。 电极材料对锂/钠电池性能与循环寿命影响极大,金属硫化物由于具有高比容量和低电势而极具潜力成为锂/钠离子电池负极材料。 在电化学循环过程中,由于金属硫化物容易产生穿梭效应和体积变化,从而电极材料结构被破坏,进一步导致电池容量衰退、稳定性降低。 本文总结了多种金属硫化物的微观结构调控策略,从三维空间构建到与其它材料的复合,增强了电极的导电性和减缓体积变化带来的负面影响,进而获得性能优异的金属硫化物负极材料。 通过对金属硫化物的结构与性能的讨论,对其研究前景进行了积极的展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号