首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mo/2Si混合粉末的摩擦化学效应   总被引:2,自引:0,他引:2  
利用 ZJM10 T型搅拌机和 X射线衍射仪研究了 Mo/ 2 Si混合粉末在机械球磨过程中的摩擦化学效应 .结果表明 :在球磨初期 ,晶粒尺寸明显减小 ,显微应变和有效温度系数明显增加 ;在球磨 3h后 ,Mo和 Si粉末的晶粒尺寸和显微应变变化幅度减小 ;球磨 10 h后 ,有效温度系数趋于极限值 ,晶粒尺寸和显微应变几乎保持不变 .塑性 Mo颗粒的机械活化以变形或晶格畸变加剧为主 ,而脆性 Si颗粒的机械活化以细化或比表面积增加为主 .球磨过程中未检测到摩擦化学变化  相似文献   

2.
分别采用油冷和低温喷雾射流冷却方法开展了涂层硬质合金刀具端铣Ti40阻燃钛合金试验,结合铣削力和铣削温度,对刀具磨损破损形态及其磨损机理进行了系统研究.结果表明:涂层硬质合金刀具在铣削Ti40阻燃钛合金时主要磨损形式为前刀面月牙洼磨损和后刀面边界磨损;前后刀面破损形态主要表现为涂层贝壳状剥落、裂纹和微崩刃.磨损机理主要是黏结磨损、磨粒磨损、氧化磨损及疲劳破损的综合作用.铣削高温是造成硬质合金刀具快速磨损的主要原因.低温喷雾射流冷却方式明显降低了铣削温度,减轻了刀具黏结磨损、氧化磨损,同时抑制了刀具边界磨损的发展速度,因而大幅度提高了刀具的耐用度.  相似文献   

3.
Study of milling stability with Hertz contact stiffness of ball bearings   总被引:2,自引:0,他引:2  
This present work examines the stability and nonlinear responses of a spindle milling system supported by ball bearings. A shaft finite element based on Timoshenko beam theory is employed to model the spindle, and modal reduction method is therefore adopted for saving the numerical calculating time. The issues of evaluating the effects of the ball bearing Hertz contact stiffness are consequently addressed. It is found that suitable constant bearing stiffness can be adopted to replace the nonlinear nonsmooth Hertz stiffness in prediction of the critical cutting depth of the milling system in certain bearing configuration conditions. For the constant bearing stiffness can be obtained by experiment, this replacement will undoubtedly simplify the spindle-bearing milling system. But with the increase in the bearing clearance, the spindle milling system will present obvious nonlinear behaviors, and the nonlinear Hertz contact bearing stiffness will take over. Isolated islands of chatter vibration, which are induced by the nonlinear nonsmooth bearing Hertz stiffness, can be found exist in milling processes in large bearing clearance conditions.  相似文献   

4.
徐佩  王超  郭春雨  苏玉民  叶礼裕 《力学学报》2021,53(5):1383-1401
吊舱推进器在极地船舶中的应用, 可避免冰区航行中转向、调头困难等操纵问题, 是极地船舶广泛采用的推进形式. 在冰-吊舱推进器切削过程中, 吊舱推进器受到了极端冰载荷的作用, 对吊舱推进器结构强度和极地船舶的安全性带来严重的危害. 为了研究不同操纵状态的吊舱推进器与冰切削时冰载荷的变化规律, 首先, 详细介绍了近场动力学方法研究物体断裂问题的理论基础, 分析该方法模拟冰材料的可行性. 基于近场动力学方法和面元法耦合推导了适用于冰破碎问题模拟的材料破坏准则和冰载荷计算方法. 其次, 提出了不同操纵状态的吊舱推进器与冰的接触判断方法, 建立了冰-吊舱推进器切削状态的数值计算模型, 实现了冰-吊舱推进器切削动态变化过程的数值仿真. 最后, 分析了吊舱推进器在直航、斜航以及操舵状态与冰切削时冰块破碎、螺旋桨和桨叶冰载荷以及吊舱单元整体扭矩的变化情况. 计算结果表明: 本文提出的不同操纵状态的吊舱推进器与冰切削时的接触判断方法能够真实地模拟冰-吊舱推进器的切削过程, 并能获得该过程中冰块的破坏现象和冰载荷变化特性, 可为冰区海洋结构冰载荷数值预报技术的发展、冰区吊舱推进器结构的优化设计和运营提供指导.   相似文献   

5.
A Mechanics Based Model for Study of Dynamics of Milling Operations   总被引:4,自引:0,他引:4  
Balachandran  B.  Zhao  M.X. 《Meccanica》2000,35(2):89-109
A unified mechanics based model with multiple degrees of freedom is developed and numerically simulated to study workpiece-tool interactions during milling of ductile workpieces with helical tools. A refined orthogonal cutting model is used at each section of the tool, and the milling forces are determined by using a spatial integration scheme along the axis of the tool. Both regenerative and loss of contact effects are considered in determining the cutting forces, which makes the model well suited for a wide range of milling operations. The model also allows for partial engagement of a tool with a workpiece, which is an important feature needed for milling operations with helical tools. Time domain simulations are carried out by using the developed model to predict the stability boundaries in the space of the tool spindle speed and the axial depth of cut. Poincaré sections are used to determine loss of stability from period-one motions to other motions such as two-period quasiperiodic motions, as a control parameter is varied.  相似文献   

6.
采用高能球磨法对煤焦油沥青碳质中间相进行非平衡处理,利用X射线衍射仪和激光Raman光谱仪研究中间相高能球磨前后的结构变化,用差示扫描量热仪测试不同状态下碳质中间相的结构稳定性,在SRV高温摩擦磨损试验机上采用阶梯升温方式考察了碳质中间相作为润滑油添加剂的摩擦磨损性能.结果表明,高能球磨处理导致中间相的结晶有序度下降,微晶石墨平面尺寸减小,层间间距增加,说明高能球磨处理促使中间相向无定形结构转变.高能球磨时间越长,中间相的无定形结构特征越明显.高能球磨处理降低了碳质中间相的稳定性,随着球磨时间增加,碳质中间相的稳定性变差.球磨态碳质中间相具有高温减摩抗磨效应,球磨时间越长,其减摩抗磨效果越明显.高能球磨处理在一定程度上促进摩擦机械诱发碳质中间相的石墨化转变,从而对其高温减摩抗磨效应有一定促进作用,球磨时间越长,其促进作用越大.  相似文献   

7.
Chaotic vibrations in high-speed milling   总被引:2,自引:0,他引:2  
A large number of literatures are devoted to the stability of the milling process and various control methods for chatter suppression. But chaotic dynamics beyond the stable region has not been considered extensively. Moreover, modeling issues for chaotic motion need more challenge for accurate prediction of its complex dynamical behavior. This paper presents a detailed two-degree-of-freedom mechanics based model for the study of chaotic vibrations in milling. Segmental multiple regenerative effect that is the principle feature of nonlinear vibrations in milling processes besides two state dependent time delays has been considered. Exact geometrical formulation of multiple regenerative effects by considering simultaneously different numbers of delayed tool positions over the cutting zone is presented for the first time. Phase portrait, bifurcation diagram, largest Lyapunov exponent, and surface profile were calculated for a given machine tool and workpiece parameters. The simulation results show positive values of the largest Lyapunov exponent corresponding to the existence of chaos in high-speed milling operations. Also, investigation of the machined surface of the workpiece formed by the helical mill demonstrates an irregular pattern on the surface.  相似文献   

8.
The effects of spindle overhang and bearing span on the frequency responses and go further contributions on stability of the spindle milling system are investigated in this paper. The transfer functions at the spindle nose are determined by the continuous two-step Timoshenko beam model, which validity is verified by the finite element method. It is found that the first spindle mode is evidently affected by the spindle overhang and has the most important influences on stability of the spindle milling system in this paper, whereas the bearing span mainly alters the spindle’s second mode in changing the vibration properties and stability of the system. These results can be considered in the spindle designing to help decreasing frequency amplitudes at spindle nose and improving milling stability in machining processes.  相似文献   

9.
The homogeneous dispersion of nanoparticles in solvents or polymer matrices is essential for practical application of nanocomposites. In this study, the planetary ball milling technique was used to de-agglomerate silica nanoparticles in butyl acetate. The size of the nanosilica aggregates was evaluated by TEM and SEM. With the addition of polyacrylate polymer to the organic solvent, the nanoparticle agglomerates were effectively broken up by planetary ball milling at the proper milling time; however, re-agglomeration occurred after a longer milling time. The results of TGA and FTIR indicated that the polyacrylate molecules could be adsorbed in situ onto the nanoparticles. Behaving similar to a dispersant, the adsorbed polyacrylate reduced the blend viscosity significantly and prevented re-agglomeration of the nanoparticles. Utilizing the polyacrylate polymer both as the dispersant and the polymer matrix, the polyacrylate-based nanocoatings were further prepared. The optical transmittance and haze value of the nanocoatings were found to be sensitive to the dispersion level of the nanoparticles, and the elastic modulus and hardness of the nanocoatings were improved in comparison with those of the neat polymer coating.  相似文献   

10.
纳米TiAIN涂层硬质合金刀具高速铣削AerMet100钢的磨损机理   总被引:2,自引:4,他引:2  
采用纳米TiAIN结构涂层硬质合金刀具对新型难加工材料AerMet100钢进行高速铣削试验,并对实验获得的数据从刀具磨破损形态及其磨损机理2方面进行系统地分析和研究。研究表明纳米TiAIN结构涂层硬质合金刀具在高速面铣削AerMet100钢时磨损破损形式主要为前刀面磨损、后刀面磨损、涂层材料的破损、微崩刃、边界沟槽磨损,贝壳状崩落;磨损机理主要是磨粒磨损、粘结磨损、氧化磨损和扩散磨损。此外,研究发现,高速铣削AerMet100钢时,由于工件材料中的Co含量较高,刀具中的Co元素不但没有扩散流失,反而增加。  相似文献   

11.
An investigation of the effect of drilling speed, milling-cutter wear, drilling mode, and applied drilling force on residual-stress measurements in a light truck wheel using a milling guide manufactured by Measurements Group, Inc. is described. The milling variables chosen were used to minimize the residual stresses induced by the introduction of a hole into the wheel material. An improved hole-drilling procedure was developed and found to be successful in the residual-stress measurements for a light truck wheel.  相似文献   

12.
薄壁件在铣削加工中容易产生共振或变形,直接影响加工稳定性及加工精度。采用主轴-刀具-工件整体铣削系统连续梁模型,系统研究在动态铣削力作用下,刀具端部与工件端部的动态响应之间的相互影响关系以及对整体系统动态响应影响较大的薄壁件尺寸。结果表明,工件横截面高度对系统共振的影响较为明显,当高度尺寸较小时,工件的低频共振会通过动态铣削力直接反映到刀具端部的振动频响上。工件横截面底边宽度尺寸的增大虽然对共振频率的改变不太明显,但会导致激发出来的刀具共振幅度出现明显降低。研究成果可以为薄壁件铣削加工系统的稳定性控制提供理论基础。  相似文献   

13.
On the basis of Runge–Kutta methods, this paper proposes two semi-analytical methods to predict the stability of milling processes taking a regenerative effect into account. The corresponding dynamics model is concluded as a coefficient-varying periodic differential equation with a single time delay. Floquet theory is adopted to predict the stability of machining operations by judging the eigenvalues of the state transition matrix. This paper firstly presents the classical fourth-order Runge–Kutta method (CRKM) to solve the differential equation. Through numerical tests and analysis, the convergence rate and the approximation order of the CRKM is not as high as expected, and only small discrete time step size could ensure high computation accuracy. In order to improve the performance of the CRKM, this paper then presents a generalized form of the Runge–Kutta method (GRKM) based on the Volterra integral equation of the second kind. The GRKM has higher convergence rate and computation accuracy, validated by comparisons with the semi-discretization method, etc. Stability lobes of a single degree of freedom (DOF) milling model and a two DOF milling model with the GRKM are provided in this paper.  相似文献   

14.
采用球磨的方法实现了在钢球表面制备大面积连续的石墨烯薄膜,考察其随球磨时间变化,石墨烯薄膜在钢球表面的包裹程度、形貌变化、结构演变过程、结合性能及摩擦学性能. 研究表明:随着球磨时间的增加,石墨烯在钢球表面团聚减少,包裹更加均一,结构趋于有序;当球磨时间达到50 h时,在钢球表面形成分布均匀且大面积连续的石墨烯薄膜,使与含氢类金刚石碳薄膜组成配伍的平均摩擦系数从裸钢球的0.043降至0.022,磨痕深度和宽度都显著降低. 经胶带粘取100次或乙醇中超声清洗30 min后球磨制备石墨烯薄膜仍然粘附于钢球表面,在氩气环境下石墨烯薄膜表现出优于钢球的摩擦磨损性能.   相似文献   

15.
Impact Dynamics in Milling of Thin-Walled Structures   总被引:5,自引:0,他引:5  
Davies  M. A.  Balachandran  B. 《Nonlinear dynamics》2000,22(4):375-392
The development of reliable high-speed spindles and motioncontrol systems has led to an increase in the industrial use ofhigh-speed milling. One of the primary applications of this newtechnology is the manufacture of thin-walled aluminum components foraircraft. The flexibility of the tools and workpieces, the high spindlefrequencies, and the inherent impact nonlinearities in the millingprocess can lead to complicated dynamic tool-workpieceinteractions. An experiment was constructed to study the vibrations ofa thin-walled part during milling. Time series, power spectra,autocorrelations, auto-bispectra, and phase portraits were examined.From this data, it is inferred that stiffness and damping nonlinearitiesdue to the intermittent cutting action have a pronounced effect on thedynamics of the workpiece. Delay space reconstructions and pointwisedimension calculations show that the associated motions arecharacterized by a fractal geometry. The auto-bispectra suggestquadratic phase coupling among the spectral peaks associated with thecutter frequency. A mechanics-based model with impact-nonlinearities wasdeveloped to explain the observed results. The predicted results agreewell with the experimental observations. The model predictions indicatethat aperiodic motions are possible over a large range ofcontrol-parameter values. These analytical and experimental results haveimplications for the prediction and control of vibrations in milling.  相似文献   

16.
Fe3O4 nanoparticles with sizes ranging from 30 to 80 nm were synthesized by wet milling iron powders in a planetary ball mill. The phase composition and the morphologies of the as-synthesized products were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nanosized Fe3O4 particles were prepared by wet milling metallic iron powder (-200 mesh, 99%) in a planetary ball mill equipped with stainless steel vials using iron balls under distilled water with a ball-to-powder mass ratio of 50:1 and at a rotation speed of 300 rpm. The use of the iron balls in this method played a key role in Fe3O4 formation. The present technique is simple and the process is easy to carry out.  相似文献   

17.
本文结合聚焦离子束-电子束(Focused ion beam-electron beam,简称FIB-EB)双束系统和真空镀膜工艺,进行微区散斑的制备工艺研究,并将所发展的微散斑制备工艺应用于喷丸镍基合金材料表面制斑,进而结合切槽法进行残余应力高温释放规律的测量研究。在FIB-EB双束系统下记录切槽前后制斑微区的图像,利用数字图像相关法计算切槽后的位移,结合InglisMuskhelishvili理论公式可计算得到残余应力。文中研究了不同温度及保温时间对残余应力释放的影响规律。结果表明,残余应力随保温时间的增长释放速度逐渐减小,最后残余应力趋于稳定值。同时,温度越高,残余应力释放越彻底,800℃下近乎完全释放。该工艺具有适用性好,效率高等优点,可望在材料微区变形测量中得到进一步应用。  相似文献   

18.
19.
The introduction of chatter limits the processing efficiency of milling. Chatter prediction is an off-line strategy to select chatter-free cutting parameters. This paper presents a novel method for prediction of milling chatter which aims to reduce the dimension of transition matrix of the discrete map, where the eigenvalues of the transition matrix determine the system stability by using Floquet theory. A linear weight function is introduced when the weighted residual method is applied to the delay differential equation on discrete time intervals. Thus the displacement item can be removed from the state vectors. When the number of discrete intervals is fixed, it is concluded that the transition matrix obtained by the proposed method is the smallest among the time-domain methods. Meanwhile, the acceleration continuity condition is naturally satisfied on discrete time nodes which endows the method with competitive accuracy.  相似文献   

20.
Cutting process of composite materials: An experimental study   总被引:1,自引:0,他引:1  
This paper focuses on experimental research of milling process of the epoxide-polymer matrix composite reinforced carbon fibers (EPMC—carbon composite). An influence of two control parameters, namely feed and rotational speed, on cutting forces is investigated. The experiment is conducted on a CNC machine with feed rate ranging from 200 to 720 mm/min and rotational speed from 2000 to 8000 rpm. The experimental time series are analysed by means of the delay coordinates method in order to find stable cutting regions and to recognize the kind of behaviour. Using this information, a new model for the cutting forces is proposed that can be used to build a new regenerative vibration model for EPMC milling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号