首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ni/Al2O3 catalysts for oxidative dehydrogenation(ODH) of ethane were prepared by impregnation of Al2O3 with nickel acetate or nickel nitrate,and by mechanical mixing of NiO and Al2O3.The Ni-based catalysts were characterized by N2 adsorption-desorption,X-ray diffraction,diffuse reflectance UV-visible diffuse reflectance spectroscopy,and temperature-programmed reduction of hydrogen.The results showed that formation of crystalline NiO particles with a size of < 8 nm and/or non-stoichiometric NiO species in the Ni/Al2O3 catalysts led to more active species in ODH of ethane under the investigated reaction conditions.In contrast,tetrahedral Ni species present in the catalysts led to higher selectivity for ethene.Formation of large crystalline NiO particles(22-32 nm) over Ni/Al2O3 catalysts decreased the selectivity for ethene.  相似文献   

2.
The physico-chemical characteristics and microstructure of cobalt silica gel catalysts with an Al2O3 additive (up to 10%) for the synthesis of hydrocarbons by the Fischer–Tropsch method are studied using a set of methods including X-ray diffraction, BET, IR spectroscopy, and temperature-programmed reduction of H2, as well as scanning and transmission electron microscopy. Phases with a spinel structure, Со3О4, CoAl2O4, and solid solutions on their basis are identified in the samples. The addition of Al2O3 changes the degree of heterogeneity and the orientation of the cobalt crystallites in the oxide and reduced forms of the catalysts. Addition of 1% Al2O3 stabilizes Со3О4 in the spinel form with a structure close to the normal one and promotes the formation of cobalt with a unimodal distribution of particles with an average size of 8 nm. The catalyst is characterized by maximum activity and selectivity with respect to C5+ carbons.  相似文献   

3.
贾翠英  陈鑫  纪敏 《催化学报》2010,31(9):1122-1126
 以柠檬酸为络合剂, 采用溶胶-凝胶法制备了具有尖晶石结构的 MgFe0.1Al1.9O4 催化剂, 并将其用于催化乙苯与 CO2 氧化脱氢反应. 运用 X 射线衍射、X 射线能量色散光谱分析、红外光谱、热重-差热、N2 吸附-脱附和 H2 程序升温还原等技术对催化剂进行了表征. 结果表明, 在 650 ºC 以上焙烧即可制得结构确定、组成均一的 Mg-Fe-Al-O 复合氧化物催化剂, 其中 Fe 物种主要以同晶取代的形式存在于尖晶石骨架中. 随着焙烧温度的升高, 尖晶石结晶度提高, Fe 物种还原能力下降, 催化剂晶粒度增大, 比表面积降低. 700 ºC 焙烧制备的 MgFe0.1Al1.9O4 具有较好的催化乙苯与 CO2 氧化脱氢反应活性和稳定性.  相似文献   

4.
Due to the complexity of the structure–activity relationship of the CuAl2O4 spinel catalyst, optimization of the catalyst structure is a great challenge. In this paper, three different CuAl2O4 spinel catalysts were prepared by the solid-phase method using copper hydroxide, copper nitrate, and copper oxide as the copper source, respectively, to study the difference in the structure of CuAl2O4 spinel catalysts induced by the raw materials and the catalytic behavior for CO hydrogenation. The structure of CuAl2O4 spinel catalyst was characterized by XRD, BET, SEM, TEM, H2-TPR and XPS. The activity of CO hydrogenation over the CuAl2O4 spinel catalyst without pre-reduction was evaluated in the slurry reactor. The results demonstrated that different copper sources had obvious influence on the CuAl2O4 spinel texture properties, surface enrichment degree, as well as decomposition and reduction ability, which further regulated the ratio of Cu+/Cu0 and thus affected the catalytic performance, especially the alcohol distribution. The CuAl2O4 spinel, employing copper hydroxide as the copper source, showed better selectivity of C2+OH, which was assigned to a higher ratio of Cu+/Cu0, along with larger pore size and pore volume. Moreover, the synergistic effect between Cu0 and γ-Al2O3 improved the selectivity of dimethyl ether.  相似文献   

5.
Studies have been carried out to clarify the mechanism of nickel interferences in the hydride generation atomic absorption spectrometric determination of arsenic and antimony. The most serious nickel interferences are observed when nickel/nickel boride nanoparticles are produced during NaBH4 reduction. In this study these particles have been observed to have diameters of less than 40 nm and sorb As(III), As(V) and Sb(III) species rather than arsine and stibine generated as so far assumed. Bulk chemical composition and surface structure of these nanoparticles were studied and it was found that if the NaBH4 reduction is carried out while passing nitrogen through the solution the black nanoparticles were composed of Ni2B and, if the reduction is carried out under air the black nanoparticles were found to consist of Ni3B or possibly a mixture of Ni(0) and Ni2B. Surface analysis studies with scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray photoelectron spectrometry and X-ray diffraction analysis have shown that the particles have amorphous structure consisting of Ni(0), Ni2B, Ni3B and Ni(OH)2. However, sorption studies have shown that Ni(0) and Ni(OH)2 do not sorb the analyte ions and arsine and stibine significantly.  相似文献   

6.
利用氨挥发诱导法在CdSe/TiO2纳米管阵列表面负载一层NixCo3-xO4。采用SEM、XRD、XPS、UV-Vis对样品进行表征,通过线性扫描伏安法测定光阳极的释氧电势来评价其光电水氧化活性。结果表明:表面NixCo3-xO4是尖晶石结构;相对于CdSe/TiO2纳米管阵列光阳极,NixCo3-xO4/CdSe/TiO2光阳极能将光电氧化水的过电势降低430 mV。Ni离子的引入使得NixCo3-xO4表面富含三价阳离子(Ni3+,Co3+),从而促进CdSe/TiO2光阳极光电水氧化的进行。  相似文献   

7.
Spinel LiMn2−x Ni x O4 compounds doped with a range of Ni (x=0–0.06) were synthesized by a spray-drying method. The structure and morphology characteristics of the powders were studied in detail by means of X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD data reveal that all the samples have well-defined spinel structure, but, with the increase in Ni content, the doped lithium manganese spinels have smaller lattice constant. The undoped and doped spinel LiMn2O4 particles are fine, narrowly distributed, and well crystallized. The electrochemical characteristics of the samples are measured in the coin-type cells in a potential range of 3.2–4.35 V vs Li/Li+. All cyclic voltammogram curves exhibit two pairs of redox reaction peaks, but, among them, there are some differences about the peak split. With the increase in the Ni content, the specific capacities of the samples decrease slightly, but their cyclic ability increases.  相似文献   

8.
CuAl2O4, NiAl2O4, and three ternary spinels CuxNi1?xAl2O3 have been prepared, in polycrystalline form, by solid-state reaction of mixtures of CuO, NiO, and Al2O3 at 1223 K. X-Ray powder diffractometry, coupled with adequate computational methods, allowed determination of the unit-cell length, oxygen positional parameter, and cation distribution for each compound. Interdependence of these structural parameters is closely analyzed on the ternary oxide spinels. The one-electron difference between the Cu2+ and Ni2+ ions was found to be enough to render them distinguishable by X-ray powder diffraction.  相似文献   

9.
A new compound, (NixMg1−x)10Ge3O16(x ⋍ 0.4−0.5), has been identified at atmospheric pressure in the NiO-MgO-GeO2 system. Its unit cell is rhombohedral with the (hexagonal) parametersa = 5.887(1)A˚, c = 28.603(4)A˚, andZ = 3 for a phase with the Ni4Mg6Ge3O16 composition. A structural model has been derived from powder X-ray diffraction data: theM10Ge3O16(M =Ni + Mg) structure results from a regular intergrowth of {111} layers of the spinel and rock-salt structures. It can also be described as an intergrowth of (001) olivine layers (Pnma setting) with {111} layers of a cation-deficient rock-salt structure. Due to its close relationship to both spinel and olivine, theM10Ge3O16(M =Ni + Mg) structure could possibly occur at the phase boundary involved in the polymorphic olivine ⇄ spinel transformation.  相似文献   

10.
Nanocrystalline Cu0.5Zn0.5Fe2-xAlxO2 (x=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) ferrite materials were synthesized using standard solid state reaction technique. The effects of Al3+ contents on the structural, electrical, and magnetic properties were investigated. Single phase cubic spinel structure was revealed by X-ray diffraction analysis. The crystallite size was evaluated considering the most intense diffraction peak (311) using Scherrer formula. Lattice constant decreased, whereas porosity increased with the increase in Al3+ concentration. The value of saturation magnetization decreased with increasing aluminum contents. Temperature dependent value of direct current electrical resistivity has been determined. It is observed that the substitution of Al3+ has significant impact on the dielectric constant, tangent of dielectric loss angle and dielectric loss factor. The variation in dielectric properties was attributed to space charge polarization.  相似文献   

11.
Fe2O3/Al2O3 and Fe2O3/Al2O3 modified by low content of Ni (below 2% in weight) oxygen carriers were prepared by mechanical mixing and impregnation method. The synthesized oxygen carriers were characterized by means of X‐ray diffraction (XRD), X‐ray fluorescence (XRF), scanning electron microscopy (SEM), BET‐surface area and temperature programmed reduction (TPR). Besides, redox cyclic reactivity and the performance of chemical looping reforming of methane of the oxygen carriers were studied in a thermal gravimetrical analysis (TGA) and fixed bed at 850°C. It was observed that the redox reactivity of the oxygen carriers is improved by Ni addition because synergic effect may occur between NiO and Fe2O3/Al2O3 to form NiFe2O4 and NiAl2O4 spinel phases. However, the improvement was not apparent as Ni addition reached 1 wt% or more because more nickel loaded resulted in methane decomposition into H2 and carbon leading to carbon deposition. The SEM and BET analysis showed that NiFe2O4 and NiAl2O4 particles dispersed into the pores of the Fe2O3/Al2O3 particles in the course of preparation. In addition, the resistance to sintering of the modified samples increased with the Ni addition increasing. The results of successive redox cycles showed that the Ni modified Fe2O3/Al2O3 oxygen carriers have good regenerability. With integration of reactivity and carbon deposition, the content 1.04 wt% of nickel doping was an optimal amount in the three modified samples.  相似文献   

12.
The nickel‐promoted Cu‐containing catalysts (CuxNiy‐MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite‐like precursors, and characterized by X‐ray powder diffraction, inductively‐coupled plasma atomic emission spectroscopy, N2 adsorption‐desorption, UV‐Vis diffuse reflectance spectra and temperature‐programmed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu‐MgAlO or Ni‐MgAlO samples in FFR hydrogenation, and the CuNi‐MgAlO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu0 species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.  相似文献   

13.
用溶胶凝胶法制备了一组NixCo1-xCoAlO4尖晶石型复合氧化物,并采用表面润湿浸渍K2CO3溶液进行了K掺杂改性,用于有氧气氛下的N2O催化分解反应.采用N2物理吸附、X-射线衍射(XRD)、扫描电镜(SEM)、H2-程序升温还原(H2-TPR)等技术对催化剂进行了表征,考察了催化剂组成、母液pH值、K负载量等制备参数对其催化活性的影响.结果表明,母液pH值为3、K/(Ni+Co)物质的量比为0.1的K/Ni0.15Co0.85CoAlO4催化剂具有较高的N2O分解活性,450 ℃ N2O可完全分解.助剂K的加入弱化了催化剂表面金属氧键,提高了催化剂的还原性、催化活性和抗水性.  相似文献   

14.
《Vibrational Spectroscopy》2000,22(1-2):75-86
Ni–Al hydrotalcite-like compounds with the general formula [Ni1−xAlx(OH)2](CO3)x/2⋅mH2O, where 0.25≤x≤0.66, were synthesised using coprecipitation at a constant pH, and were treated hydrothermally. The structures of the oxidic forms obtained by calcination of the hydrotalcites at 450°C and 900°C, respectively, were investigated using X-ray diffraction and, mainly, IR and UV–VIS spectroscopy. A NiO phase was identified by XRD in all calcined samples; an additional oxidic phase — the nickel spinel, NiAl2O4 — developed at 900°C. IR spectroscopy results gave supplementary information about the incipient, local organisation of cations in the interstices of the oxygen atoms lattice. IR spectra were different, depending on the samples' composition. In case of the HT precursors calcined at 450°C a structure like a transition alumina (γ-Al2O3) was found as a main oxidic phase in samples with a high Al-content; IR spectra of the samples with a high Ni content evidenced NiO as the main oxidic phase; in case of these latter samples, the formation of an oxidic structure with a spinel-type local order was identified at this temperature. This structure developed to an inverse nickel spinel oxidic phase at 900°C, as shown by the IR absorption bands. The NiO structure in the samples with a high Ni content at 450°C was found also in the oxides obtained by calcination at 900°C. The spinel-type local order was also observed by UV–VIS spectroscopy in case of the HT precursors calcined at 450°C, by the presence of both absorption bands of the tetrahedral and octahedral Ni(II) ions in the Al2O3 lattice and of octahedral Ni(II) ions in the NiO lattice. The same absorption bands were found also in the samples calcined at 900°C, proving that the NiAl2O4 spinel identified has a partial inverse structure, with the Ni(II) ions both in tetrahedral and octahedral crystalline fields. Our found structural data were in accord with the models proposed in the literature.  相似文献   

15.
Two series of silver modified Ni-Mg materials were synthesized by precipitation-deposition on SiO2 support derived from two silica sources: diatomite activated at 800°C (Series a; Mg/Ni = 0.1 and SiO2/Ni = 1.07) and synthetic water glass (Series b; Mg/Ni = 0.1 and SiO2/Ni = 1.15). The modification with silver was made at three molar Ag/Ni ratios, namely 0.0025, 0.025, and 0.1. The effects of the source of the silica support and the silver presence and content on the nickel state in the silver modified reduced-passivated NiMg/SiO2 precursors of the vegetable oil hydrogenation catalyst were established by X-ray diffraction and X-ray photoelectron spectroscopy techniques. The passivation procedure was applied in order to protect the metallic nickel particles from further oxidation. The crystallization of the formed nickel hydrosilicate phases depends on the source of the silica support, more expressed in the diatomite supported samples. It was shown that the silver modification of the NiMg/SiO2 precursors enhances the reduction of the nickel hydrosilicates accompanied by formation of relatively smaller metallic nickel particles, more pronounced in the water glass supported precursors. The increase of the silver content in the water glass deposited samples is responsible for the metallic nickel dispersion increase. The higher content of the Ni0 particles on the surface of the diatomite deposited samples is in accordance with the higher stability of the larger metallic nickel crystallites to oxidation during the passivation step. On contrary, higher dispersed Ni0 particles on the surface of the water glass supported samples are more susceptible to the oxida The article is published in the original.  相似文献   

16.
A Cu‐based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite‐like precursor, which was prepared by co‐precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.5Zn0.17Al0.33)(OH)2(CO3)0.17] ? mH2O precursor is transferred into a carbonate‐modified, amorphous mixed oxide. The calcined catalyst can be described as well‐dispersed “CuO” within ZnAl2O4 still containing stabilizing carbonate with a strong interaction of Cu2+ ions with the Zn–Al matrix. The reduction of this material was carefully analyzed by complementary temperature‐programmed reduction (TPR) and near‐edge X‐ray absorption fine structure (NEXAFS) measurements. The results fully describe the reduction mechanism with a kinetic model that can be used to predict the oxidation state of Cu at given reduction conditions. The reaction proceeds in two steps through a kinetically stabilized CuI intermediate. With reduction, a nanostructured catalyst evolves with metallic Cu particles dispersed in a ZnAl2O4 spinel‐like matrix. Due to the strong interaction of Cu and the oxide matrix, the small Cu particles (7 nm) of this catalyst are partially embedded leading to lower absolute activity in comparison with a catalyst comprised of less‐embedded particles. Interestingly, the exposed Cu surface area exhibits a superior intrinsic activity, which is related to a positive effect of the interface contact of Cu and its surroundings.  相似文献   

17.
A series of NixCo1-xCo2O4(0 ≤ x ≤ 1) spinel catalysts were prepared by the co-precipitation method and used for direct N2O decomposition. The decomposition pathway of the parent precipitates was characterized by thermal analysis. The catalysts were calcined at 500 °C for 3 h and characterized by powder X-ray diffraction, Fourier transform infrared, and N2 adsorption-desorption. Nickel cobaltite spinel was formed in the solid state reaction between NiO and Co3O4. The N2O decomposition measurement revealed significant increase in the activity of Co3O4 spinel oxide catalyst with the partial replacement of Co2+ by Ni2+. The activity of this series of catalysts was controlled by the degree of Co2+ substitution by Ni2+, spinel crystallite size, catalyst surface area, presence of residual K+, and calcination temperature.  相似文献   

18.
Li-rich layered Li1.2Ni0.2Mn0.6O2 has been surface modified by nickel–manganese composite oxide (Ni0.5Mn1.5O x ) to serve as a novel cathode material with novel layered spinel structure for lithium-ion battery. The as-prepared Li1.2Ni0.2Mn0.6O2 before and after surface modification by Ni0.5Mn1.5O x as well as simply blended Li1.2Ni0.2Mn0.6O2 with spinel LiNi0.5Mn1.5O4, have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electronic microscopy, and differential scanning calorimetry. Electrochemical studies indicate that the Ni0.5Mn1.5O x surface modified Li1.2Ni0.2Mn0.6O2 with peculiar layered spinel character dramatically represented increased discharge capacity, improved cycling stability as well as excellent rate capability at high-voltage even up to 5.0 V.  相似文献   

19.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

20.
Hydrogen production by catalytic reforming of simulated hot coke oven gas (HCOG) with toluene as a model tar compound was investigated in a fixed bed reactor over Ni/Mg(Al)O catalysts. The catalysts were prepared by a homogeneous precipitation method using urea hydrolysis and characterized by ICP, BET, XRD, TPR, TEM and TG. XRD showed that the hydrotalcite type precursor after calcination formed (Ni, Mg)Al2O4 spinel and Ni-Mg-O solid solution structure. TPR results suggested that the increase in Ni/Mg molar ratio gave rise to the decrease in the reduction temperature of Ni2+ to Ni0 on Ni/Mg(Al)O catalysts. The reaction results indicated that toluene and CH4 could completely be converted to H2 and CO in the catalytic reforming of the simulated HCOG under atmospheric pressure and the amount of H2 in the reaction effluent gas was about 4 times more than that in original HCOG. The catalysts with lower Ni/Mg molar ratio showed better catalytic activity and resistance to coking, which may become promising catalysts in the catalytic reforming of HCOG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号