首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
This opinion is focused on the electrochemistry of peptides utilised in biological and technological processes. The redox behaviour of peptides important in biomedicine, neuropeptides and antimicrobial peptides is highlighted. In addition to peptides composed of essential amino acids, peptide-mimetic molecules such as peptide nucleic acid and artificial peptidic wires transferring protons and electrons are reviewed. The application of electrochemistry for the research of peptide–membrane and peptide–surface interactions is also discussed.  相似文献   

2.
The redox-active multiligand-binding flavoprotein dodecin binds flavins with high affinity when they are oxidized, whereas flavin reduction induces the dissociation of the holoprotein complex in apododecin and free flavin ligands. Dodecin could be reconstituted at flavin-terminated dsDNA monolayers. The binding and release of apododecin triggered by the redox state of the flavins can be monitored by surface-sensitive techniques such as surface plasmon resonance and quartz crystal microbalance measurements with dissipation monitoring. It has been shown that flavin reduction followed by the release of apododecin can be achieved by mediated electron transfer in the presence of the redox mediator amino ethyl viologen and by chemical flavin reduction, whereas flavin reduction by direct electron transfer via the dsDNA tethers is not possible. The combination of electrochemistry with surface-sensitive techniques such as surface plasmon resonance or quartz crystal microbalance measurements with dissipation monitoring could be highly beneficial to confirm or disprove the mechanism, which has been postulated for the action of primases, which contain a [4Fe4S] cluster and are involved in DNA replication. It has been postulated that these enzymes bind the DNA template when the cluster is in the [4Fe4S]3+ state, whereas they are released when the cluster is reduced via electron transfer through DNA and the protein environment.  相似文献   

3.
This article reviews recent developments in spectroscopic analysis of electrode-immobilised enzymes under direct, unmediated electrochemical control. These methods unite the suite of spectroscopic methods available for characterisation of structural, electronic and coordination changes in proteins with the exquisite control over complex redox enzymes that can be achieved in protein film electrochemistry in which immobilised protein molecules exchange electrons directly with an electrode. This combination is particularly powerful in studies of highly active enzymes where redox states can be controlled even under fast electrocatalytic turnover. We examine examples in which UV-visible, IR, Raman and MCD spectroscopy have been combined with direct electrochemistry to probe redox-dependent chemistry, and consider future opportunities for 'direct' spectroelectrochemistry of immobilised enzymes.  相似文献   

4.
The regioselective syntheses of 1,2‐azaborinines is achieved using an unsymmetrical iminoborane through both catalytic and stepwise modular routes. The 1,2‐azaborinine ring can be selectively functionalized in the 4‐ and/or 6‐position through control of the stepwise reaction sequence, allowing access to vinyl‐functionalized and redox‐active, luminescent, donor‐functionalized 1,2‐azaborinines. The electrochemistry and photochemistry of a tetraarylamine‐substituted 1,2‐azaborinine are studied. Cyclic voltammetry of this compound, relative to a non‐B,N‐substituted reference molecule, showed an additional oxidation wave assigned to the oxidation of the azaborinine ring, while emission spectroscopy indicated that the azaborinine was significantly more fluorescent than the reference.  相似文献   

5.
Xien Liu  Kun Jin  Qinji Peng 《Tetrahedron》2005,61(23):5655-5662
A new molecular dyad, comprised of a zinc-porphyrin and a ruthenium(II) tris(bipyridine) complex linked through an amide bond has been synthesized and characterized by 1H, 13C NMR, UV-vis, mass-spectrometry and elemental analysis. The electrochemistry as well as the steady-state emission properties were investigated. The redox behavior of the dyad exhibits a favorable reversible characteristic. Substantial quenching of porphyrin emission was found when the Q band of 5 and 5-Zn was selectively photoexcited. This observation suggests a quenching mechanism with possible intramolecular electron transfer or energy transfer between the Ru(bpy)3 moiety and the porphyrin free-base or Zn porphyrin moieties.  相似文献   

6.
We report herein the effect of palladium on the redox electrochemistry of ferrocene monocarboxylic acid encapsulated within an organically modified sol-gel glass network (ORMOSIL). It has been found that amount of palladium and its geometrical distribution significantly alter the redox electrochemistry of FcMCA. The geometrical distribution of palladium has been controlled by two methods: (i) palladium is allowed to link within nanostructured network of the ORMOSIL which was subsequently availed from the reactivity of palladium chloride and trimethoxysilane; (ii) palladium powder is encapsulated together FcMCA thus allowing the presence of palladium within the nanoporous domain. The content of palladium is varied by controlling the reaction dynamics of palladium chloride and trimethoxysilane interaction. For this we initially allowed to trigger hydrolysis, condensation and poly-condensation of trimethoxysilane and dimethyldiethoxysilane in acidic medium and subsequently partially dried ORMOSIL film was allowed to interact with palladium chloride. Even with partially dried ORMOSIL derived from trimethoxysilane and dimethyldiethoxysilane undergoes rapid interaction with palladium chloride and the transparent color of ORMOSIL changed to a black colour due to the formation of palladium silicon linkage. The palladium-silicon linkage has been identified by NMR, UV-VIS and transmission electron spectroscopy. The electrochemistry of FcMCA encapsulated within such an ORMOSIL matrix has been studied. Excellent redox electrochemistry of ferrocene monocarboxylic acid having peak potential separation tending to 0 for a multilayered electrode was investigated. The palladium content has been found to affect the redox electrochemistry of ferrocene as well as electrocatalytic efficiency of new ORMOSIL material. The electroanalysis of NADH is reported. The modified electrode is very sensitive to NADH with lowest detection limit of < 1 microM.  相似文献   

7.
The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation–anion annihilation is an energy‐deficient process and, thus, the ECL has been justified through the triplet–triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron‐transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.  相似文献   

8.
The assembly of gold nanoparticles (AuNPs) on a hydrogenated Si(100) surface, mediated by a series of hierarchical and reversible complexation processes, is reported. The proposed multi‐step sequence involves a redox‐active ditopic guest and suitable calix[n]arene‐based hosts, used as functional organic monolayers of the two inorganic components. Surface reactions and controlled release of AuNPs have been monitored by application of XPS, atomic force microscopy (AFM), field‐emission scanning electron microscopy (FESEM) and electrochemistry.  相似文献   

9.
在CH2Cl2、THF及DMSO中研究了系列光谱烧孔材料苯并卟啉锌配合物的电化学及光谱电化学特性,给出不同结构的苯并卟啉锌配合物的氧化还原电位及相应氧化还原态的光谱,结合光谱数据和氢化还原电位数值估算了与光化学光谱烧孔过程密切相关的分子激发态氧化还原电位。  相似文献   

10.
Electrodes made from single crystals of tetrathiafulvalenium tetracyanoquinodimethanide (TTF. TCNQ) have been used to study the electrochemistry of the conducting organic salt and to investigate the mechanism of the electrochemical oxidation of glucose oxidase at conducting salt electrodes.The single crystal electrodes exhibit much lower non-Faradaic currents than the corresponding polycrystalline electrodes prepared as sublimed films or as pressed pellets. This leads to much lower background current levels and hence more clearly defined electrochemistry for solution species. Studies of the ac impedance behaviour and the electrochemistry of outer sphere redox species indicate that TTF·TCNQ electrodes behave as conventional metallic electrodes within their stable potential range.Results for the electrochemistry of glucose oxidase at the single crystal electrodes are inconsistent with a simple homogeneous mediation mechanism or with simple heterogeneous redox catalysis. Similarities with results obtained for TTF modified glucose oxidase suggest that the enzyme may undergo direct electrochemistry after modification by hydrophobic interaction with TTF molecules derived from the conducting salt electrode.  相似文献   

11.
《Analytical letters》2012,45(13):2019-2030
We herein report an electrochemical hydrogen peroxide sensor based on horseradish peroxidase immobilized in organically modified sol-gel glass (ormosil) with mediator ferricyanide along with multiwalled carbon nanotubes (mwcnts). The ormosil material is converted to fine powder followed by incorporation within graphite paste electrode. The electrochemistry of redox materials encapsulated within ormosil has been studied. The requirement of mwcnts is examined. The ormosil prepared with optimum concentration of mwcnts shows better redox electrochemistry as compared to that made without mwcnts. The biosensor has been characterized by cyclic voltammetry and chroanoamperometry. The performance, stability, and reproducibility of a new peroxide biosensor are reported.  相似文献   

12.
Self-assembled monolayer (SAM) on gold electrode has been extensively studied in electrochemistry. It is a good model for study the electron transfer through the SAM from metal to redox couple in the solution or tethered on the surface of monolayer. For a pinehole-free monolayer, electron tunneling is considered as the mechanism of electron transfer through the film. The detail of the process in electrochemistry is not clear though there are a lot of publications on SAM research. In this paper,the electrochemical behavior of pinehole-free alkanethiol modified SAM electrode was investigated at different potential in the solution containing various concentration Fe(CN)63-/4- ions. It was found that the apparent resistance could be attributed mainly to the resistance of SAM film.  相似文献   

13.
《Electroanalysis》2004,16(15):1193-1204
The knowledge of the redox chemistry of nucleic acids (NA) is of paramount importance in cancer and aging research. Charge migration through DNA is also involved in biologically relevant functions such as DNA damage and repair. In the first part of this article the main aspects of the electrochemistry of nucleic acids at solid electrodes are revised, including redox processes, photoelectroactivity and electrical conductivity. In the second part, an overview of its applications is presented. Methods for electrochemical detection of NA, NA‐based biosensors for detection of nonnucleic acid molecules, studies on the nature and dynamics of interactions and structural conformations of NA, are some applications that take advantage of NA electrochemistry at solid electrodes.  相似文献   

14.
The role of pyridinium cations in electrochemistry has been believed known for decades, and their radical forms have been proposed as key intermediates in modern photoelectrocatalytic CO(2) reduction processes. Using first-principles density functional theory and continuum solvation models, we have calculated acidity constants for pyridinium cations and their corresponding pyridinyl radicals, as well as their electrochemical redox potentials. Contrary to previous assumptions, our results show that these species can be ruled out as active participants in homogeneous electrochemistry. A comparison of calculated acidities and redox potentials indicates that pyridinium cations behave differently than previously thought, and that the electrode surface plays a critical (but still unknown) role in pyridinium reduction. This work substantially alters the mechanistic view of pyridinium-catalyzed photoelectrochemical CO(2) reduction.  相似文献   

15.
胺菊酯分子印迹电化学传感器的制备及性能   总被引:1,自引:0,他引:1  
以邻氨基酚(OAP)为单体,胺菊酯为印迹分子,采用循环伏安法在玻碳电极上电化学聚合制备了胺菊酯分子印迹敏感膜。采用场发射扫描电镜(FESEM)和电化学方法对该印迹传感器进行了表征。结果表明:分子印迹传感器敏感膜洗脱前和洗脱后在形貌结构和电化学特性方面有明显的不同。以铁氰化钾为电化学探针,利用差分脉冲法(DPV)研究了传感器的响应性能,胺菊酯浓度在10.0~100nmol·L~(-1)范围内,传感器峰电流变化(△i)与胺菊酯浓度c呈线性关系,检出限(3σ)为5.8nmol·L~(-1)该传感器的响应时间为10min,测定相对标准偏差(n=7)为2.76%,回收率在96.0%~103.0%之间。  相似文献   

16.
Four contemporary examples, all published in recent years, of studies of molecular electronics at electrode–electrolyte interfaces are reviewed in this opinion article. The first illustrative example involves the switching of the redox active molecular wire between redox states, with concomitant changes in molecular conductance. This example illustrates how molecular electronics at electrode–electrolyte interfaces can be used to analyse mechanisms of electron transfer, to distinguish electrolyte effects and to provide details not readily available from ensemble measurements. The second example shows that the fluctuations of molecular conductance of a redox active molecular wire can be followed as a function of electrode potential. This shows how the stochastic kinetics of individual reaction events at electrode–electrolyte interfaces can be followed. The third example demonstrates how electrochemistry can be used to control quantum interference in single molecular wires. The fourth example shows a single-molecule electrochemical transistor concept for well-defined metal cluster containing molecular wires.  相似文献   

17.
Understanding the biocatalytic or the interfacial electron transfer processes of redox enzymes is decisive to develop high-performance biofuel cells, mimetic catalysts, bioelectrosynthesis reactors, biosensors, and bioelectronic devices. The state-of-art of redox enzyme electrochemistry lies in using in situ and operando instrumentation, in which protein electrochemistry is resourcefully coupled to or hyphenated with numerous analytical techniques. Nevertheless, there is still a lot to research about the manipulation of redox proteins in the unusual sample holding environments, and bioelectrodes engineering emerges as a key. Here, we discuss these challenges in detail, focusing on contemporary instrumentation setups.  相似文献   

18.
In this Opinion, we address some of the most important results obtained electrochemically in the area of intramolecular electron transfer (ET). The focus is on freely diffusing molecular systems in which a donor D and an acceptor A are separated by a well-defined bridge B (D-B-A systems). B can be a saturated spacer, a delocalized bridge, or the more complex peptide backbones. As to the acceptors, the selected examples encompass species that can be charged reversibly but a special emphasis is on ETs associated with the concerted cleavage of a sigma bond (dissociative ETs). Our goal is to showcase the essential background, the most appropriate electrochemical tools and methodologies, and a series of selected examples where molecular electrochemistry has provided invaluable information on the mechanisms of intramolecular ET and electronic communication through bridges.  相似文献   

19.
Chemical modification of metal surfaces by chemisorption provides a versatile method for the production of electrode interfaces which can be selective for the direct electrochemistry of one redox protein over another. The electrochemistry of a mixture of horse heart cytochrome c and spinach plastocyanin has been investigated at gold surfaces made selective for first one and then the other protein. The resulting cyclic voltammetry is quite unusual, containing pre-shoulders to both reduction current and reoxidation current peaks. The results have been interpreted in terms of fast second order electron transfer reactions taking place between the two proteins in homogeneous solution. This rationalisation has been corroborated by an explicit digital simulation of the proposed reaction scheme, using second order RKI. There are three independently variable parameters to the simulation: forward kinetic parameter, reverse kinetic parameter, and concentration ratio of non-electrode-active species to electrode-active species. The simulation has been used to explore a number of interesting trends in these parameters. Five such sequences of simulated cyclic voltammograms are reported, together with peak current and potential data in most cases. Attention is drawn to the possibility for further interesting experimental mixed redox protein electrochemistry at selective surfaces.  相似文献   

20.
There has been substantial recent interest in studying monolayer-protected gold clusters (MPCs) owing to their diverse applications. The present work is an electrochemical study of novel gold nanoparticles covered with a monolayer of mercapto-dodecanol ended chloro-dicyano-quinone (HS-C12O-CDQ), which was adsorbed on the electrode (CDQ-MPCs film). Our findings reveal a redox behavior for CDQ-MPCs film similar to the solution electrochemistry of dichloro-dicyano-quinone. Furthermore, a diffusion-like mechanism was found for electron transfer, which may have occurred due to proton diffusion towards or outwards the electrode through the film casted. Chronoamperometry confirmed diffusion behavior of the ET process. Finally, EIS was used to find the rate constant of ET process for the redox reaction that occurred and the contribution of MPCs in total interfacial capacitance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号