首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
Carbon nanodots (C-Dots) have attracted much attention in recent years due to their low cost, ready scalability, excellent chemical stability, biocompatibility and multicolor luminescence. Here, we report a facile strategy for producing highly luminescent, surface-different nitrogen-doped carbon dots (C-Dots) by using different ionic liquids (ILs). Intriguingly, the surface-different C-Dots show different selectivity for Cu2+ and Fe3+. To the best of our knowledge, this is the first example which shows that ILs are excellent precursors for producing luminescent nanomaterial used for detection of different metal ions. The resultant nitrogen-doped C-Dots are highly photoluminescent and can be used for multicolor bioimaging. Most notable, by taking different ILs as precursors, we obtain surface-different C-Dots, which can be directly used for selective detection of Cu2+ and Fe3+ without any modification. These C-Dots based sensors exhibit high sensitivity and selectivity and the sensing process can be easily accomplished with one-step rapid operation. More importantly, compared with other method using QDs, organic dyes and organic solvent, this strategy is much more eco-friendly. This work may offer a new approach for developing low cost and sensitive C-Dots-based sensors for biological and environmental applications.  相似文献   

2.
Some organic solvents are highly toxic, flammable, and even explosive. In particular, high vapor pressures and toxicity of certain volatile organic solvents may cause significant environmental problems. Therefore, alternative solvents or media with tunable and versatile solvation properties for conducting chemical reactions and materials synthesis have been actively sought. Ionic liquids have numerous applications not only as environmentally benign reaction media, but also as catalysts and reagents. Due to the increase of environmental consciousness in chemical research and industry, the challenge for a sustainable environment calls for clean procedures that avoid the use of harmful organic solvents. Due to the special properties of ILs (ionic liquids) such as wide liquid range, good solvating ability, negligible vapor pressure, non-inflammability, non-volatility, environment friendly medium, high thermal stability, good stability in air and moisture, easy recycling and rate promoters etc. they are used in organic synthesis. Therefore, ionic liquids have attracted the attention of chemists and act as catalyst and reaction medium in organic reactions with high activity. Highly efficient methods are explored for the preparation of S-heterocycles with the application of ILs as catalyst and reaction medium.  相似文献   

3.
Navjeet Kaur 《合成通讯》2018,48(5):473-495
A considerable attention has been paid on the use of ionic liquids in chemical research. Modern synthetic chemistry is benefited as ionic liquid methodology provided an environmentally benign approach. In comparison to traditional processes the use of ILs resulted in improved, complimentary or alternative selectivities in organic synthesis. This review focuses on the advances in the development of innovative applications of ionic liquids for the synthesis of five- and six-membered O,N-heterocycles.  相似文献   

4.
Owing to their unique chemical and physical properties, ionic liquids (ILs) have received focus attention for application as solvent alternatives. ILs can be used in place of organic solvents in synthesis, catalysis, electrochem istry and liquid/liquid extractions. The commonly reported ILs have relied on pyridinium or imidazolium cations bearing simple alkyl groups.  相似文献   

5.
The applications of ionic liquids (ILs) and IL‐derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL‐based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL‐based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL‐based solid‐phase extraction, ILs in mass spectrometry, and biological applications.  相似文献   

6.
Artificial receptor-based protein assays have various attractive features such as a long-term stability, a low-cost production process, and the ease of tuning the target specificity. However, such protein sensors are still immature compared with conventional immunoassays. To enhance the application potential of synthetic sensing materials, organic field-effect transistors (OFETs) are some of the suitable platforms for protein assays because of their solution processability, durability, and compact integration. Importantly, OFETs enable the electrical readout of the protein recognition phenomena of artificial receptors on sensing electrodes. Thus, we believe that OFETs functionalized with artificial protein receptors will be a powerful tool for the on-site analyses of target proteins. In this Minireview, we summarize the recent progress of the OFET-based protein assays including the rational design strategies for devices and sensing materials.  相似文献   

7.
Ionic liquids(ILs), especially basic ILs with unique physicochemical properties, have wide application in catalysis. Using basic ILs as catalysts for the conversion of cheap, abundant, nontoxic, and renewable CO_2 into value-added organic carbonates is highly significant in view of environmental and economic issues. This review aims at giving a detailed overview on the recent advances on basic ILs promoted chemical transformation of CO_2 to cyclic and linear carbonates. The structures of various basic ILs, as well as the basic ILs promoted reactions for the transformation of CO_2 to organic carbonates are discussed in detail,including the reaction conditions, the yields of target products, the catalytic activities of basic ILs and the reaction mechanism.  相似文献   

8.
韩铖乐  曹明敏  杨芳  陈玉焕 《化学通报》2023,86(8):929-936,928
乙烯,作为石油化工行业的龙头原料,其高效回收分离具有重要的战略意义。离子液体作为一种结构可调控的新型绿色溶剂,在乙烯的回收分离中展现出巨大的应用前景。本文总结了近年来离子液体在乙烯/乙烷和乙烯/乙炔分离方面的研究进展,从溶剂吸收、膜吸收和与多孔材料相结合的吸附分离法等角度展开,系统地阐述了常规离子液体、功能化离子液体、聚离子液体等纯组分体系及多组分体系在不同分离方法中的研究现状,展望了离子液体在乙烯回收分离方面的应用前景和发展趋势。  相似文献   

9.

Pillar[5]arene (P5)-based materials can be preferable one of the most sensing elements in chemical sensor applications due to their high cavity and their special chiral structure. While the P5-based macrocycle molecules have been utilized as thin-film materials, the reports of chemical sensor application by performing P5 as sensor molecules have been very limited in the available literature. In this report, quinoline P5 (P5-Q) molecules were used to produce thin films via spin coating technique. P5-Q spun films were characterized with Atomic Force Microscopy (AFM) and Ultraviolet–Visible (UV–Vis) spectrophotometer. The gas sensing abilities of these P5-Q spun films were investigated by Quartz Crystal Microbalance (QCM) and Surface Plasmon Resonance (SPR) techniques. In order to illuminate the gas sensing properties of P5-Q spun films, they were prepared as mass-sensitive and optical sensors. These sensors were utilized for its sensing abilities against organic vapours (acetone, methyl alcohol, and ethyl alcohol) by the mechanism of host–guest interaction. The current study also describes the diffusion coefficients of these organic vapors to illuminate the swelling dynamics of P5-Q spun films by performing Fick’s diffusion equation. The responses of P5-based optical (SPR) or mass sensitive (QCM) sensor in terms of the change in reflective intensity or the change in frequency and the values of diffusion coefficients showed that P5-Q molecules can be developed as potential chemical sensor element for acetone vapor compared to alcohol vapors.

  相似文献   

10.
In recent years, much research has focused on the development of low-cost, printed electrochemical sensor platforms for environmental monitoring and clinical diagnostics. Much effort in this area has been based on utilising the redox properties of conducting polymers, particularly polyaniline (PANI). In tackling the inherent lack of processability exhibited by these materials, several groups have examined various mass-amenable fabrication approaches to obtain suitable thin films of PANI for sensing applications. Specifically, the approaches investigated over the years include the in situ chemical synthesis of PANI, the use of sulphonated derivatives of PANI and the synthesis of aqueousbased nano-dispersions of PANI. Nano-dispersions have shown a great deal of promise for sensing applications, given that they are inkjet-printable, facilitating the patterning of conducting polymer directly to the substrate. We have shown that inkjet-printed films of PANI can be finely controlled in terms of their two-dimensional pattern, thickness, and conductivity, highlighting the level of precision achievable by inkjet printing. Utilising these nanomaterials as inkjet-printable inks opens novel, facile, and economical possibilities for conducting polymer-printed electronic applications in areas of sensing, but also many other application areas such as energy storage, displays, organic light-emitting diodes. Given that inkjet-printing is a scalable manufacturing technique, it renders possible the large-scale production of devices such as sensors for a range of applications. Several successes have emerged from our work and from the work of others in the area of applying PANI in low-cost sensor applications, which is the focus of this review.  相似文献   

11.
《Comptes Rendus Chimie》2016,19(5):654-664
The application of the concept of chemical homology to describe melting properties of molten salts and ionic liquids (ILs) is analyzed. This concept was used several years ago to correlate and predict properties of solids and more recently to correlate melting temperatures of ILs. To analyze the characteristics of the extended method, this is first applied to melting properties of organic substances for which abundant data are available. The method is extended to analyze its applicability for properties of molten salts and ILs such as glass transition temperature, heat of melting, and entropy of melting. The foundation of the chemical homology concept is revised, and the difficulties for extending the method to correlate and predict melting properties of ILs are presented. Despite the difficulties, the homology concept can still be used with some conditions and limitations that are analyzed in this article. Several correlations are proposed.  相似文献   

12.
There are two categories of coordination polymers (CPs): inorganic CPs (i‐CPs) and organic ligand bridged CPs (o‐CPs). Based on the successful crystal engineering of CPs, we here propose noncrystalline states and functionalities as a new research direction for CPs. Control over the liquid or glassy states in materials is essential to obtain specific properties and functions. Several studies suggest the feasibility of obtaining liquid/glassy states in o‐CPs by design principles. The combination of metal ions and organic bridging ligands, together with the liquid/glass phase transformation, offer the possibility to transform o‐CPs into ionic liquids and other ionic soft materials. Synchrotron measurements and computational approaches contribute to elucidating the structures and dynamics of the liquid/glassy states of o‐CPs. This offers the opportunity to tune the porosity, conductivity, transparency, and other material properties. The unique energy landscape of liquid/glass o‐CPs offers opportunities for properties and functions that are complementary to those of the crystalline state.  相似文献   

13.
Abstract

Task-specific ionic liquids (TSILs) have received increased attention over the past few years as it is possible to form any specific ionic liquid (IL) composition depending upon user's need of the desired physical, chemical, and biological properties. These fascinating materials have shown promising results in various areas such as organic synthesis, catalysis, and specially recent emerging trend of use as functionalized ILs for chiral and nanoparticle synthesis. Present review gives an update of recent developments in the field of TSILs with emphasis on their applications in organic synthesis.  相似文献   

14.
Ionic liquids (ILs) are often considered green solvents capable of replacing traditional organic solvents and have been extensively studied in materials chemistry and catalysis. In this study, the direct polycondensation of N,N′‐(4,4′‐oxydiphthaloyl)‐bis‐L ‐phenylalanine diacid with various aromatic diamines was performed in IL media. The influence of various reaction parameters, including the nature of the IL cations and anions, the monomer structures, the reaction temperature, and the reaction time, on the yields and inherent viscosities of the resulting optically active poly(amide imide)s (PAIs) were investigated. Direct polycondensation successfully preceded in ILs and triphenyl phosphite (a condensing agent) without any additional extra components, such as LiCl and pyridine, which are used in similar reactions in ordinary molecular solvents. Therefore, ILs can act as both solvents and catalysts. Various high‐molecular‐weight, optically active PAIs were obtained in high yields with inherent viscosities ranging from 0.54 to 0.88 dL/g. This method was also compared with three other classical methods for the polycondensation of the aforementioned monomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6545–6553, 2005  相似文献   

15.
Ionic liquids (ILs), especially basic ILs with unique physicochemical properties, have wide application in catalysis. Using basic ILs as catalysts for the conversion of cheap, abundant, nontoxic, and renewable CO2 into value-added organic carbonates is highly significant in view of environmental and economic issues. This review aims at giving a detailed overview on the recent advances on basic ILs promoted chemical transformation of CO2 to cyclic and linear carbonates. The structures of various basic ILs, as well as the basic ILs promoted reactions for the transformation of CO2 to organic carbonates are discussed in detail, including the reaction conditions, the yields of target products, the catalytic activities of basic ILs and the reaction mechanism.  相似文献   

16.
高分子离子液体的研究进展   总被引:11,自引:0,他引:11  
综述了高分子离子液体最新的研究进展。作为离子液体的载体材料主要有两大类 :一是无机高分子 ,离子液体中的阴离子或阳离子通过与无机高分子材料表面的基团键合形成含离子液体结构的高分子 ;二是有机高分子 ,在有机高分子上引入离子液体合成聚合物电解质 ,并介绍了其在催化、导电材料方面的应用前景  相似文献   

17.
The advent of ionic liquids (ILs) as eco‐friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in‐depth review on the newly emerging IL‐based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL‐based syntheses of energy materials.  相似文献   

18.
离子液体作为一类新型绿色溶剂,因其独特的理化性质,被广泛应用于催化、有机合成、分离富集和电化学等领域。其中,离子液体在生物大分子的分离纯化、催化和降解方面显示出良好的应用前景,成为研究的热点领域之一。本文从离子液体与生物大分子的本质关系出发,对离子液体在DNA和蛋白质的分离纯化、酶的活性稳定性和天然纤维素溶解等过程中与生物大分子之间的相互作用进行了综述。  相似文献   

19.
离子液体(ILs)功能化的金属有机框架(MOFs)和共价有机框架(COFs)材料兼具离子液体和MOFs/COFs的优点,是一种极具潜力的复合催化材料。MOFs和COFs材料固定的孔结构及较大的比表面积为负载高分散催化中心提供了天然的物理空间;多孔结构促使催化剂与反应物充分接触;丰富的孔道有利于运输催化反应底物和产物,进而实现催化反应的高效进行。特别是离子液体片段的引入,可以作为催化活性中心的配体(稳定剂)或分散剂,同时能够有效改善MOFs和COFs材料孔道和活性中心周围的微环境。此外,还可以充分利用离子液体片段在适当的反应条件下转化为氮杂环卡宾配体的特点,在MOFs和COFs材料中引入氮杂环卡宾有机金属配合物。因此,我们对近几年来离子液体功能化的MOFs或COFs催化体系在CO2环加成、CO2还原、C-C偶联、羰基化以及其它有机转化反应中的研究应用进行简要综述。并对复合材料在催化领域的发展进行总结和展望。  相似文献   

20.
Plastics are wonderful materials that have modernized our daily life; however, importance of effective recycling of plastics is gradually recognized widely. In this account, we describe our discovery of new and efficient methods for the chemical recycling of plastics using ionic liquids (ILs). Since the chemical recycling usually requires high temperature conditions to breakdown chemical bonds in polymeric materials, we thought that less-flammability and non-volatility of ionic liquids are the most suitable physical properties for this purpose. Ionic liquids successfully depolymerized polyamides and unsaturated polyesters smoothly and corresponding monomeric materials were obtained in good yields. To the best of our knowledge, this was the first use of Ionic liquids for such reactions. However, we encountered another difficult problem-separation. To solve the problem, we developed solubility-switchable ionic liquids, a new type of ionic liquids in which solubility is readily changed using the chemistry of protective groups. Conversion between hydrophilic and lipophilic forms was readily achieved using a simple chemical treatment under mild conditions, and the complete separation of products was achieved by liquid-liquid-extraction. The robustness of either form unlocks their wide use as reaction solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号