首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recycling spent Zn–Mn batteries by synthesizing the products with high added value is very active internationally. In this work, we have successfully synthesized the spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries by simple sol–gel method using the manganese source that is recovered from spent Zn–Mn batteries through hydrometallurgy recycling technology. The influence of sintering temperature on the structure, the morphological properties, and the electrochemical properties of the product is investigated. The results show that spinel LiMn2O4 prepared at 700 °C has the best comprehensive performance. Moreover, the electrochemical performance of spinel LiMn2O4 has been further optimized by Co-ion doping.  相似文献   

2.
The long‐standing challenge associated with capacity fading of spinel LiMn2O4 cathode material for lithium‐ion batteries is investigated. Single‐crystalline spinel LiMn2O4 nanorods were successfully synthesized by a template‐engaged method. Porous Mn3O4 nanorods were used as self‐sacrificial templates, into which LiOH was infiltrated by a vacuum‐assisted impregnation route. When used as cathode materials for lithium‐ion batteries, the spinel LiMn2O4 nanorods exhibited superior long cycle life owing to the one‐dimensional nanorod structure, single‐crystallinity, and Li‐rich effect. LiMn2O4 nanorods retained 95.6 % of the initial capacity after 1000 cycles at 3C rate. In particular, the nanorod morphology of the spinel LiMn2O4 was well‐preserved after a long‐term cycling, suggesting the ultrahigh structural stability of the single crystalline spinel LiMn2O4 nanorods. This result shows the promising applications of single‐crystalline spinel LiMn2O4 nanorods as cathode materials for lithium‐ion batteries with high rate capability and long cycle life.  相似文献   

3.
Porous LiMn2O4 microsheets with micro-nanostructure have been successfully prepared through a simple carbon gel-combustion process with a microporous membrane as hard template. The crystal structure, morphology, chemical composition, and surface analysis of the as-obtained LiMn2O4 microsheets are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscope (XPS). It can be found that the as-prepared LiMn2O4 sample presents the two-dimensional (2-D) sheet structure with porous structure comprised with nano-scaled particles. As cathode materials for lithium-ion batteries, the obtained LiMn2O4 microsheets show superior rate capacities and cycling performance at various charge/discharge rates. The LiMn2O4 microsheets exhibit a higher charge and discharge capacity of 137.0 and 134.7 mAh g?1 in the first cycle at 0.5 C, and it remains 127.6 mAh g?1 after 50 cycles, which accounts for 94.7% discharge capacity retention. Even at 10 C rate, the electrode also delivers the discharge capacity of 91.0 mAh g?1 after 300 cycles (93.5% capacity retention). The superior electrochemical properties of the LiMn2O4 microsheets could be attributed to the unique microsheets with porous micro-nanostructure, more active sites of the Li-ions insertion/deinsertion for the higher contact area between the LiMn2O4 nano-scaled particles and the electrolyte, and better kinetic properties, suggesting the applications of the sample in high-power lithium-ion batteries.  相似文献   

4.
Using sulfuric acid-assisted hydrothermal treatment, β-MnO2 particles were obtained from the electrolytic manganese dioxide (EMD). Via high-temperature solid-phase reactions, spinel lithium manganese oxides (LiMn2O4) were produced using the obtained β-MnO2 particles as precursor mixed with LiOH·H2O for the lithium-ion battery cathodes. Atomic absorption (AAS) shows that after the hydrothermal treatment, the contents of impurity ions, such as Na+, K+, Ca2+, and Mg2+, caused by the limitation of preparation technology of EMD are greatly reduced. X-ray diffraction and scanning electron microscopy show that β-MnO2 is highly alloyed consisting of nano sticks. Spinel lithium manganese (LiMn2O4) synthesized by the β-MnO2 precursor has high crystallinity with a well 111 face grow and presents a regular and micron-sized octagonal crystal. When used as cathode materials for lithium-ion batteries, LiMn2O4 synthesized by the β-MnO2 precursor has greater discharge capacity, better cycle performance, and better high-rate capability when compared with LiMn2O4 synthesized by the EMD precursor. Cyclic voltammetry and electrochemical impedance spectroscopy indicate that LiMn2O4 synthesized by the β-MnO2 precursor has better electrochemical reaction reversibility, greater peak current, higher lithium-ion diffusion coefficient, and lower electrochemical impedance.  相似文献   

5.
Pyrometallurgy technique is usually applied as a pretreatment to enhance the leaching efficiencies in the hydrometallurgy process for recovering valuable metals from spent lithium-ion batteries. However, traditional pyrometallurgy processes are energy and time consuming. Here, we report a carbothermal shock (CTS) method for reducing LiNi0.3Co0.2Mn0.5O2 (NCM325) cathode materials with uniform temperature distribution, high heating and cooling rates, high temperatures, and ultrafast reaction times. Li can be selectively leached through water leaching after CTS process with an efficiency of >90 %. Ni, Co, and Mn are recovered by dilute acid leaching with efficiencies >98 %. The CTS reduction strategy is feasible for various spent cathode materials, including NCM111, NCM523, NCM622, NCM811, LiCoO2, and LiMn2O4. The CTS process, with its low energy consumption and potential scale application, provides an efficient and environmentally friendly way for recovering spent lithium-ion batteries.  相似文献   

6.
Commercial lithium-ion batteries ranged from different sizes, shapes, capacities, electrolytes, anode and cathode materials, etc. have recently caused many incidents under abusive or normal operating conditions worldwide. Inherently safer designs with active or passive protections have became the captious issues that need more attentions paid to. In this study, the worst scenarios on thermal runaway of four commercial batteries were conducted and compared. A customized-made closed testing instrument was utilized to measure and track thermal behaviors of four brands of cylindrical lithium-ion batteries under maximum open circuit voltage condition. Characteristics on thermal hazards of lithium-ion batteries such as onset temperature, maximum temperature, maximum self-heat rate, maximum pressures, battery mass loss, etc. were measured and evaluated. Results point out that one brand of cells reached the maximum temperature and maximum self-heat rate of 590.9 K and 1,130.4 K min?1, respectively. In conclusion, in case of thermal runaway all the lithium-ion batteries will rupture the cell and catch fire automatically owing to the maximum temperatures over the auto-ignition temperature of electrolytes and the maximum pressure higher than four times of maximum allowable working pressure, respectively. In addition, Lithium-ion battery with cathode material of LiFePO4 was verified to be more stable than the lithium-ion battery with cathode material of LiMn2O4 or LiCoO2.  相似文献   

7.
Thermal instability of lithiated cathode materials with organic carbonate were investigated using DSC. Lithium transition metal oxides of LiFePO4, LiMn2O4, and LiCoO2 were mixed with diethyl carbonate, dimethyl carbonate, ethylene carbonate, ethyl methyl carbonate, and propylene carbonate then dynamically screened to about 500 °C. Curves were acquired and analyzed to determine exothermic onset temperatures and reaction enthalpies. These data for assessing the thermal hazards of lithium-ion batteries under discharged conditions were compared to those data published in the literature.  相似文献   

8.
使用Ge4+、Sn4+作为掺杂离子, 通过高温固相法制备四价阳离子掺杂改性的尖晶石LiMn2O4材料. X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明, Ge4+离子取代尖晶石中Mn4+离子形成了LiMn2-xGexO4 (x=0.02,0.04, 0.06)固溶体; 而Sn4+离子则以SnO2的形式存在于尖晶石LiMn2O4的颗粒表面. Ge4+离子掺入到尖晶石LiMn2O4材料中, 抑制了锂离子在尖晶石中的有序化排列, 提高了尖晶石LiMn2O4的结构稳定性; 而在尖晶石颗粒表面的SnO2可以减少电解液中酸的含量, 抑制酸对LiMn2O4活性材料的侵蚀. 恒电流充放电测试表明, 两种离子改性后材料的容量保持率均有较大幅度的提升, 有利于促进尖晶石型LiMn2O4锂离子电池正极材料的商业化生产.  相似文献   

9.
Lithium nickelate (Li0.88Ni1.12O2), lithium cobaltate (LiCoO2) and lithium manganate (LiMn2O4) were synthesized by fast self-propagating high-temperature combustion and their phase purity and composition were characterized by X-ray diffraction and inductively coupled plasma spectroscopy. The electrochemical behaviour of these oxides was investigated with regard to potential use as cathode materials in lithium-ion secondary batteries. The cyclic voltammograms of these cathode materials recorded in 1 M LiClO4 in propylene carbonate at scan rates of 0.1 and 0.01 mV s–1 showed a single set of redox peaks. Charge-discharge capacities of these materials were calculated from the cyclic voltammograms at different scan rates. The highest discharge capacity was observed in the case of Li0.88Ni1.12O2. In all the cases, at a very slow scan rate (0.01 mV s–1) the capacity of the charging (oxidation) process was higher than the discharging (reduction) process. A strong influence of current density on the charge-discharge capacity was observed during galvanostatic cycling of Li0.88Ni1.12O2 and LiMn2O4 cathode materials. LiMn2O4 can be used as cathode material even at higher current densities (1.0 mA cm–2), whereas in the case of Li0.88Ni1.12O2 a useful capacity was found only at lower current density (0.2 mA cm–2). For the fast estimation of the cycling behaviour of LiMn2O4, a screening method was used employing a simple technique for immobilizing microparticles on an electrode surface. Electronic Publication  相似文献   

10.
Searching for novel anode materials to address the issues of poor cycle stability in the aqueous lithium-ion battery system is highly desirable. In this work, ammonium vanadium bronze (NH4)2V7O16 with brick-like morphology has been investigated as an anode material for aqueous lithium-ion batteries and Li+/Na+ hybrid ion batteries. The two novel full cell systems (NH4)2V7O16||Li2SO4||LiMn2O4 and (NH4)2V7O16||Na2SO4||LiMn2O4 both demonstrate good rate capability and excellent cycling performance. A capacity retention of 78.61 % after 500 cycles at 300 mA g−1 was demonstrated in the (NH4)2V7O16||Li2SO4||LiMn2O4 system, whereas no capacity attenuation is observed in the (NH4)2V7O16||Na2SO4||LiMn2O4 system. The reaction mechanisms of the (NH4)2V7O16 electrode and impedance variation of the two full cells were also researched. The excellent cycling stability suggests that layered (NH4)2V7O16 can be a promising anode material for aqueous rechargeable lithium-ion batteries.  相似文献   

11.
A new system of electrolytes has been developed and studied for lithium-ion batteries. This new system is based on the interactions between Li2O or Li2O2 and tris(pentafluorophenyl) borane (TPFPB) in carbonate based organic solvents. This opens up a completely new approach in developing non-aqueous electrolytes. In general, the solubility of Li2O or Li2O2 is very low in organic solvents and the ionic conductivities of these solutions are almost undetectable. By adding certain amount of tris(pentafluorophenyl) borane (TPFPB), one type of boron based anion receptors (BBARs), the solubility of Li2O or Li2O2 in carbonate based solvents was significantly enhanced. In addition, the Li+ transference numbers of these new electrolytes measured were as high as 0.7, which are more than 100% higher than the values for the conventional electrolytes for lithium-ion batteries. The room-temperature conductivities are around 1 × 10−3 S/cm. These new electrolytes are compatible with LiMn2O4 cathode for lithium-ion batteries.  相似文献   

12.
Na-rich layered oxides as cathode materials for sodium-ion batteries were designed using an electrochemical method based on Li-rich layered oxides. The materials show high specific capacity that can reach 234 mAh/g at a current of 5 mA/g. The energy density of this material (644 Wh/kg) is even higher than those of commercial cathodes for lithium-ion batteries, such as LiFePO4 and LiMn2O4. Kinetic analysis of Na+ insertion/extraction into/from the Na-rich layered oxide reveals that the Na+ diffusion coefficient is about 10 14 cm2/s.  相似文献   

13.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2015,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料, 以柠檬酸为螯合剂, 采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料LiMn1.9Mg0.05Ti0.05O4. 采用热重分析(TGA), X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征. 结果表明: 780℃下煅烧12 h 得到了颗粒均匀细小的尖晶石型结构的LiMn1.9Mg0.05Ti0.05O4材料, 该材料具有良好的电化学性能, 在室温下以0.5C倍率充放电, 在4.35-3.30 V电位范围内放电比容量达到126.8 mAh·g-1, 循环50 次后放电比容量仍为118.5mAh·g-1, 容量保持率为93.5%. 在55℃高温下循环30次后的放电比容量为111.9 mAh·g-1, 容量保持率达到91.9%, 远远高于未掺杂的LiMn2O4的容量保存率. 二价镁离子与四价钛离子等摩尔共掺杂LiMn2O4, 改善了尖晶石锰酸锂的电子导电和离子导电性能, 使其倍率性能和高温性能都得到了明显的提高.  相似文献   

14.
Neutron powder diffraction (NPD) offers many advantages in the analysis of battery materials. Understanding the relationship between the structural transformations of electrode materials and their electrochemical performance within lithium-ion batteries is crucial for further development of these technologies and is the overall goal of in situ NPD experiments. In this work, we present NPD data of electrode materials within batteries that are collected in situ during electrochemical cycling, including the commercially available materials LiCoO2, LiMn2O4, LiFePO4 and graphite and the YFe(CN)6 and FeFe(CN)6 materials that are not commercially available. Using these data, we illustrate the experimental approach and requirements for the collection of in situ NPD data of sufficient quality for detailed structural analyses of the electrode components of interest within batteries.  相似文献   

15.
采用溶胶凝胶法和还原氧化石墨法制备尖晶石LiMn2O4纳米晶和石墨烯纳米片,并采用冷冻干燥法制备了石墨烯/尖晶石LiMn2O4纳米复合材料,利用XRD、SEM、AFM等对其结构及表面形貌进行表征;利用CV、充放电、EIS研究纳米复合材料的电化学性能和电极过程动力学特征。结果表明:纳米LiMn2O4电极材料及其石墨烯掺杂纳米复合材料的放电比容量分别为107.16 mAh.g-1,124.30 mAh.g-1,循环100周后,对应容量保持率为74.31%和96.66%,石墨烯可显著改善尖晶石LiMn2O4电极材料的电化学性能,归结于其良好的导电性。纳米复合材料EIS上感抗的产生与半导体尖晶石LiMn2O4不均匀地分布在石墨烯膜表面所造成局域浓差有关,并提出了感抗产生的模型。  相似文献   

16.
The cathode materials, LiMn2O4, LiAl0.05Mn1.95O4 and LiAl0.05Mn1.95O3.95F0.05 were firstly prepared by a simple solution-based gel method using the mixture of acetate and ethanol as the chelating agent. The synthesized samples were investigated by X-ray diffraction, scanning electronic microscope and differential and thermal analysis. The as-prepared powders were used as positive materials for lithium-ion battery, whose discharge capacity and cycle voltammogram properties were examined. The results revealed that LiAl0.05Mn1.95O3.95F0.05 synthesized by the solution-based gel method had higher initial capacity than LiAl0.05Mn1.95O4 and better capacity retention rate (92%) than that of LiAl0.05Mn1.95O4 and LiMn2O4, which revealed that Al and F dual-doped LiMn2O4 could gain better electrochemical properties of LiMn2O4 than only the Al-doped LiMn2O4.  相似文献   

17.
Layered structural lithium metal oxides with rhombohedral α-NaFeO2 crystal structure have been proven to be particularly suitable for application as cathode materials in lithium-ion batteries. Compared with LiCoO2, lithium nickel manganese oxides are promising, inexpensive, nontoxic, and have high thermal stability; thus, they are extensively studied as alternative cathode electrode materials to the commercial LiCoO2 electrode. However, a lot of work needs to be done to reduce cost and extend the effective lifetime. In this paper, the development of the layered lithium nickel manganese oxide cathode materials is reviewed from synthesis method, coating, doping to modification, lithium-rich materials, nanostructured materials, and so on, which can make electrochemical performance better. The prospects of lithium nickel manganese oxides as cathode materials for lithium-ion batteries are also looked forward to.  相似文献   

18.
Spinel cathode materials consisting of LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres have been synthesized by a facile solution‐phase coating and subsequent solid‐phase lithiation route in an atmosphere of air. When used as the cathode of lithium‐ion batteries, the double‐shell LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres thus obtained show a high specific capacity of 120 mA h g?1 at 1 C rate, and excellent rate capability (90 mAhg?1 at 10 C) over the range of 3.5–5 V versus Li/Li+ with a retention of 95 % over 500 cycles.  相似文献   

19.
The effect of Al2O3 -coating on Li3V2(PO4)3/C cathode material for lithium-ion batteries has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, and HRTEM, and their electrochemical performances are evaluated by CV, EIS, and galvanostatic charge/discharge tests. It is found that Al2O3 -coating modification stabilizes the structure of the cathode material, decreases the polarization of electrode and suppresses the rise of the surface film resistance. Electrochemical tests indicate that cycling performance and rate capability of Al2O3-coated Li3V2(PO4)3/C are enhanced, especially at high rates. The Al2O3-coated material delivers discharge capacity of 123.03 mAh g?1 at 4 C rate, and the capacity retention of 94.15 % is obtained after 5 cycles. The results indicate that Al2O3 -coating should be an effective way to improve the comprehensive properties of the cathode materials for lithium-ion batteries.  相似文献   

20.
The properties of electrolyte systems based on standard nonaqueous solvent composed of a mixture of dialkyl and alkylene carbonates and new commercially available lithium salts potentially capable of being an alternative to thermally unstable and chemically active lithium hexafluorophosphate LiPF6 in the mass production of lithium-ion rechargeable batteries are surveyed. The advantages and drawbacks of electrolytes containing lithium salts alternative to LiPF6 are discussed. The real prospects of substitution for LiPF6 in electrolyte solutions aimed at improving the functional characteristics of lithium-ion batteries are assessed. Special attention is drawn to the efficient use of new lithium salts in the cells with electrodes based on materials predominantly used in the current mass production of lithium-ion batteries: grafitic carbon (negative electrode), LiCoO2, LiMn2O4, LiFePO4, and also solid solutions isostructural to lithium cobaltate with the general composition LiMO2 (M = Co, Mn, Ni, Al) (positive electrode).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号