共查询到20条相似文献,搜索用时 15 毫秒
3.
Many encryption algorithms are directly based on the matrix transformation or their own definition of strict rules. We try to propose a new digital image encryption scheme to simulate physical phenomena rather than deliberately create rigid rules. First, the paper takes each pixel of the image as a Brownian particle, using the Monte Carlo method to simulate a Brownian motion, thus effectively scrambling the image. Then we diffuse the image with PWLCM chaotic system. To enhance the sensitivity of the key and the plaintext, we modified the initial value of PWLCM chaotic system. Experimental results and security analysis show that our method has good performance and can be used in image encryption and transmission. 相似文献
4.
Based on the high-dimension Lorenz chaotic system and perceptron model within a neural network, a chaotic image encryption
system with a perceptron model is proposed. This paper describes the algorithm flow in detail, and analyses the cryptographic
security. The experimental results show that this algorithm has high security, and strong resistance to the existing attack
methods. 相似文献
5.
Nonlinear Dynamics - In this paper, a new and efficient pixel-level image encryption algorithm is presented. In contrast to the traditional permutation–diffusion architecture, the proposed... 相似文献
6.
Chaotic behavior arises from very simple non-linear dynamical equation of logistic map which makes it was used often in designing chaotic image encryption schemes. However, some properties of chaotic maps can also facilitate cryptanalysis especially when they are implemented in digital domain. Utilizing stable distribution of the chaotic states generated by iterating the logistic map, this paper presents a typical example to show insecurity of an image encryption scheme using chaotic logistic map. This work will push encryption and chaos be combined in a more effective way. 相似文献
8.
In this paper, a new image alternative encryption algorithm is proposed, in which the shuffling and diffusion are performed simultaneously. The plain image is divided into two left and right blocks of same size. The matrix which is generated by a logistic map is used to diffuse the left block of the plain image. Then, the diffused image is used as the right block of the cipher image. The 0, 1 sequence which comes from another logistic chaotic sequence and plaintext is used to shuffle the right block of the cipher image. After the operation XOR, the left block of cipher image is generated. Finally, two new-generated blocks are merged into the cipher image. In order to get better effect for image encryption, this process can be repeated many rounds. The simulation results show that this algorithm has properties of big key space, high sensitivity to key, resisting statistical analysis, differential attacks, plaintext attacks, and chosen-plaintext attacks. So, it has high security and can be suitable for image encryption. 相似文献
9.
This paper focuses on the design of chaotic image compression encryption algorithms. Firstly, we design a uniform non-degenerate chaotic system based on nonlinear filters and the feed-forward and feed-back structure. Theoretical and experimental analyses indicate that the system can avoid the drawbacks of the existing chaotic systems, such as chaos degradation, uneven trajectory distribution, and weak chaotic behavior. In addition, our chaotic system can produce chaotic sequences with good pseudo-random characteristics. Then, we propose a fractal image compression algorithm based on adaptive horizontal or vertical (HV) partition by improving the baseline HV partition and the time-consuming global matching algorithm. The algorithm does not need to implement time-consuming global matching operations. In addition, analysis results demonstrate that our fractal image compression algorithm can reconstruct the original image with high quality under ultra-high compression ratios. Finally, to protect the confidentiality of images, we propose a chaotic fractal image compression and encryption algorithm by using our chaotic system and fractal image compression algorithm. The algorithm achieves excellent diffusion and confusion abilities without using the hash value of plain images. Therefore, it avoids the failure of decryption caused by the tampering of hash value during the transmission process, and can well resist differential attacks and chosen-ciphertext attacks. In addition, simulation results show the algorithm is efficient and robust. 相似文献
10.
Nonlinear Dynamics - In this paper, a new seventh-order mixed memristive chaotic circuit was designed, and the new mathematical model of the system was established. The origin as the only... 相似文献
11.
In this paper, a new image encryption scheme is proposed that uses intertwining chaotic maps to enhance security and key length. In the substitution process, six randomly chosen odd integers are used to permute and then XORed with the first chaotic key to shuffle and alter the image pixels. Byte substitution has also been applied and the resultant values are XORed with the second chaotic key to improve the security against the known/chosen-plain text attack and to increase nonlinearity. In the diffusion process, the pixel values are altered sequentially with various operations which include nonlinear diffusion using the first chaotic key, subdiagonal diffusion of adjacent pixels and XORing with the third chaotic key. The security and performance of the proposed image encryption technique have been analyzed using statistical analysis, sensitivity analysis, key space analysis, differential analysis, and entropy analysis. The simulation shows that a single bit of key or pixel difference of the plain-image will change almost all the pixels in the cipher-image ( $\mathrm{NPCR}>99.63$ ?%), and the unified average changing intensity is high ( $\mathrm{UACI}>33.43$ ?%). Since the entropy is found to be close to the theoretical value, we observed that the information leakage is negligible, and hence the scheme is highly secure. The experimental results show that the performance of the proposed scheme is secure and fast. 相似文献
12.
A block-based image encryption algorithm using wave function and chaotic system is presented. A random sequence generated by the chaotic system is used to find the source point in the wave and produces a diffusion matrix for modular operation. In the encryption process, the keystream is dependent on both the plain-image and the secret key. It changes in each encryption round. Theoretical analyses and simulation results show the high security of the proposed method, including the large key space, fairly uniform histogram, zero correlation between neighbouring pixels, resistance to differential attacks, and high efficiency. Therefore, our algorithm is a practical scheme for digital image encryption. 相似文献
13.
Image encryption has been an attractive research field in recent years. The chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a novel image encryption scheme, which is based on the chaotic tent map. Image encryption systems based on such map show some better performances. Firstly, the chaotic tent map is modified to generate chaotic key stream that is more suitable for image encryption. Secondly, the chaos-based key stream is generated by a 1-D chaotic tent map, which has a better performance in terms of randomness properties and security level. The performance and security analysis of the proposed image encryption scheme is performed using well-known ways. The results of the fail-safe analysis are inspiring, and it can be concluded that the proposed scheme is efficient and secure. 相似文献
16.
Recently, image encryption has emerged as an extremely urgent need to provide high protection for secure images against being used without any authorization. In the present paper, the 3-cell chaotic map known as cycling chaos was employed for image encryption based on biological operations. In order to increase security of the proposed method, the 120-bits secret key is used. DNA Sequences and cycling chaos were used to scramble the positions of the image pixels, and then the pixels grey values were modified using a mask DNA generated by cycling chaos. The obtained results demonstrated high security of the proposed method, and it was found acceptably resistant against different well-known attacks. 相似文献
17.
Recently, a chaotic image encryption algorithm based on the perceptron model was proposed. The present paper analyzes the security of the algorithm and finds that the equivalent secret key can be reconstructed with only one pair of known-plaintext/ciphertext, which is supported by both mathematical proof and experiment results. In addition, two other security defects are also reported. 相似文献
18.
A novel and efficient image encryption algorithm based on chaos and multiple S-boxes is proposed in this paper, in which a set of S-boxes is initially constructed using a chaotic system, and each of the S-boxes is considered as a circular sequence with a head pointer. For each image pixel, an S-box is chosen from the set of S-boxes and used to substitute for the plain pixel to get a cipher pixel, and then the chosen S-box is updated by moving its head pointer forward according to the cipher pixel and a random number. In order to increase the plaintext sensitivity of encryption, the substitution processes are performed in forward direction and backward direction, respectively. This scheme not only offers the high security by employing two directional substitutions and using the different S-boxes for each pixel but also achieves high encryption speed by constructing only a few S-boxes and updating the S-box dynamically and easily. The performance of the proposed algorithm is evaluated using a variety of analysis. Experimental results show that the proposed image encryption algorithm is secure and efficient. 相似文献
|