共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Arslan I Walmsley JC Rytter E Bergene E Midgley PA 《Journal of the American Chemical Society》2008,130(17):5716-5719
Cobalt-based Fischer-Tropsch systems are widely used to convert synthesis gas to clean hydrocarbon fuel. However, surprisingly little is known about the morphology of the catalysts on the nanoscale. Here we show that scanning transmission electron tomography reveals their true 3-D morphology and provides direct evidence that the support controls the final morphology of the catalyst. Such direct local three-dimensional measurements provide unprecedented insight into catalysis, and can henceforth transform our understanding of these complex materials. 相似文献
7.
8.
9.
Chanda A Ryabov AD Mondal S Alexandrova L Ghosh A Hangun-Balkir Y Horwitz CP Collins TJ 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(36):9336-9345
Small-molecule synthetic homogeneous-oxidation catalysts are normally poorly protected from self-destruction under operating conditions. Achieving design control over both activity and half-life is important not only in advancing the utility of oxidation catalysts, but also in minimizing hazards associated with their use and disposal. Iron(III)-TAML (tetraamido-macrocyclic ligand) oxidant catalysts rapidly activate H(2)O(2) for numerous significant processes, exhibiting high and differing activity and varying half-lives depending upon the TAML design. A general approach is presented that allows for the simultaneous determination of the second-order rate constant for the oxidation of a targeted substrate by the active catalyst (k(II)) and the rate constant for the intramolecular self-inactivation of the active catalyst (k(i)). The approach is valid if the formation of the active catalyst from its resting state and the primary oxidizing agent, measured by the second-order rate constant k(I), is fast and the catalyst concentration is very low, such that bimolecular inactivation pathways can be neglected. If the oxidation process is monitored spectrophotometrically and is set up to be incomplete, the kinetic trace can be analyzed by using the equation ln(lnA(t))/A(infnity)=ln(k(II)/k(i)[Fe(III)](tot)-k(i)t, from which k(II) and k(i) can be determined. Here, A(t) and A(infinity) are absorbances at time t and at the end of reaction (t=infinity), respectively, and [Fe(III)](tot) is the total catalyst concentration. Several tools were applied to examine the validity of the approach by using a variety of different Fe(III)-TAML catalysts, H(2)O(2) and tBuOOH as oxidizing agents, and the dyes safranine O and orange II as target substrates. Learning how catalyst activities (k(II)) and catalyst half-lives (k(i)) can be controlled by ligand design is an important step in creating green catalysts that will not persist in the environment after they have achieved their purpose. 相似文献
10.
A new, general patterning methodology that may allow for the preparation of site-isolated organometallic catalysts on a silica surface is reported. The technique is demonstrated with Group 4 polymerization catalysts. The catalysts synthesized via the patterning method have up to a 10-fold increase in activity as compared to materials prepared by traditional techniques. In addition to supporting Group 4 polymerization catalysts, the patterned aminosilica is a possible support for other metal complexes, allowing for the synthesis of a wide array of immobilized single-site organometallic catalysts. 相似文献
11.
13.
Structures of hydrated vanadia species on the TiO2-anatase surfaces were investigated using the semiempirical molecular orbital method MSINDO. The (101), (001), and (100) surfaces of anatase were considered. They were modeled by appropriate two-dimensional cyclic clusters of TiO2. Monomeric and dimeric hydrated vanadia species on the anatase surfaces were simulated by adsorbing VO4H3 and V2O7H4 molecules, respectively. Different adsorption structures were considered, and their stabilities at 300 and 600 K were tested by constant-temperature Born-Oppenheimer molecular dynamics simulations in the framework of MSINDO. Structural features of the vanadia-titania catalysts found in extended X-ray absorption fine structure, secondary ion mass spectrometry, IR, Raman, and NMR spectroscopy and conductivity experiments can be explained by the present calculations. 相似文献
14.
A historical review of the perfection of oil cracking catalysts, including problems of modifying the zeolite component and the chemical and phase structure of the catalyst matrix is presented. The role of matrix components in the formation of effective cracking catalysts is discussed. The mechanism of formation of the active centers and secondary porous structure of the zeolite component under high-temperature steam ultrastabilization conditions is considered. Data on the catalytic systems for oil cracking, developed at the IHP SB RAS, are given. 相似文献
15.
16.
17.
18.
催化在现代化工生产中正发挥非常重要的作用.在未来催化甚至会扮演更重要的角色.然而,现有的催化剂制备方法会对空气、水和土地造成污染.这些污染主要来源于催化剂制备过程中会用到的各种有害化学品.而且,现有催化剂制备过程耗时长、耗能高、用水量大.这些都不符合绿色化学原则.因此,开展催化剂绿色制备研究十分必要.这一研究的长远目标是避免或者消除催化剂制备过程每一环节产生的污染,降低每一环节的能耗和物耗,缩短制备时间,减少劳动强度.显然,这并不是一个容易达成的目标.因此,朝着上述长远目标的任何进展,无论是小进展还是大进展,都将有助于最终实现催化剂的绿色制备.我们总结了气体放电冷等离子体在催化剂绿色制备方面的最新进展,特别强调了非氢冷等离子体在催化剂制备中的应用.冷等离子体是一种能在室温附近操作的非平衡等离子体,是对气体施加一定电压(数百至上万伏特;具体电压值取决于气体压力)形成的.冷等离子体制备方法可以在少用或者不用有害化学品的基础上,有效减小催化剂粒径、增加催化剂分散度、提高催化剂和载体的相互作用等.这些改进同时能进一步提高催化剂的活性和稳定性.相对于常规热化学制备催化剂,冷等离子体制备的显著区别在于:冷等离子体在室温或者略高于室温条件下操作,可以有效避免热化学方法存在的缺点.冷等离子体方法利用其富含的高能物质(如电子)快速促进催化剂前驱体分解,从而实现催化剂快速成核.由于低温操作,其晶体生长速度受到限制,催化剂分散性得以提高.研究表明,以非氢等离子体作为电子源的室温电子还原能够有效还原贵金属离子.这个过程中既不需要有害化学还原剂也不需要氢还原.这为以热敏材料和化学不稳定物质作为基底的负载型催化剂制备创造了条件.这些热敏材料包括金属有机骨架材料(MOF)、共价有机骨架材料(COF)、高比表面积的碳、多肽、DNA和蛋白质等等.这个室温电子还原还被用于制备能在水面或其它溶液表面上漂浮的催化剂,对发展新型催化剂有很大帮助.此外,使用冷等离子体还可以进行低温模板脱除,以避免高温分解可能出现的烧结问题,在保证催化剂高比表面积的同时获得只有在高温分解才能得到的结构特征.研究表明,可以使用冷等离子体诱发微燃烧以除去炭模板,可以有效减少炭模板法制备氧化物结构材料所需要的化学品.冷等离子体方法在催化剂制备中的应用刚刚开始,尚有大量研究还有待于开展(如多金属氧化物制备等),存在大量研发机会.可以预期,冷等离子体在催化剂绿色制备与应用中将发挥更重要的作用. 相似文献
19.
New chiral ligands (4 and 5) for polymetallic asymmetric catalysts were designed based on the hypothesis that the assembled structure should be stable when made from a stable module 8. A metal-ligand=5:6+μ-oxo+OH complex was generated from Gd(OiPr)3 and 4 or 5, and this complex was an improved asymmetric catalyst for the desymmetrization of meso-aziridines with TMSCN and conjugate addition of TMSCN to α,β-unsaturated N-acylpyrroles, compared to the previously reported catalysts derived from 1-3. These two groups of catalysts produced opposing enantioselectivity even though the ligands had the same chirality. The functional difference in the asymmetric catalysts is derived from differences in the higher-order structure of the polymetallic catalysts. 相似文献
20.
Sheldon RA 《Chemical Society reviews》2012,41(4):1437-1451
In this tutorial review, the fundamental concepts underlying the principles of green and sustainable chemistry--atom and step economy and the E factor--are presented, within the general context of efficiency in organic synthesis. The importance of waste minimisation through the widespread application of catalysis in all its forms--homogeneous, heterogeneous, organocatalysis and biocatalysis--is discussed. These general principles are illustrated with simple practical examples, such as alcohol oxidation and carbonylation and the asymmetric reduction of ketones. The latter reaction is exemplified by a three enzyme process for the production of a key intermediate in the synthesis of the cholesterol lowering agent, atorvastatin. The immobilisation of enzymes as cross-linked enzyme aggregates (CLEAs) as a means of optimizing operational performance is presented. The use of immobilised enzymes in catalytic cascade processes is illustrated with a trienzymatic process for the conversion of benzaldehyde to (S)-mandelic acid using a combi-CLEA containing three enzymes. Finally, the transition from fossil-based chemicals manufacture to a more sustainable biomass-based production is discussed. 相似文献