首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventionally mixed LSM–YSZ, LSM impregnated YSZ (LSM + YSZ) and Pd impregnated LSM–YSZ (Pd + LSM–YSZ) cathodes, were prepared and evaluated by electrochemical impedance spectroscopy and single cell testing. The electrochemical performance of the impregnated cathodes have been significantly boosted due to the formation of nano-sized LSM and Pd particles on the YSZ and LSM–YSZ substrates, respectively, and in turn, the increased area of the triple phase boundary (TPB) where the O2 reduction reaction occurs, the power densities as high as 1.42 and 0.83 W cm?2 at 750 °C were achieved from single cells with the Pd + LSM–YSZ and LSM + YSZ cathodes, respectively, in contrast to 0.20 W cm?2 from the single cell with the conventional LSM–YSZ cathode. Suggesting the Pd + LSM–YSZ and LSM + YSZ cathodes can be well used for the intermediate temperature solid oxide fuel cells (IT-SOFCs).  相似文献   

2.
Solid oxide fuel cells (SOFCs) are being actively developed world wide for clean and efficient electrical generation from fuels such as natural gas, hydrogen, coal, and gasoline. The cathode in state of the art SOFCs is typically a porous composite of electronically-conducting La1?xSrxMnO3 (LSM) and ionically-conducting Y2O3-stabilized ZrO2 (YSZ) that facilitates the critical oxygen reduction reaction. Here we describe the three-dimensional characterization and quantification of key structural parameters from an LSM-YSZ cathode, using imaging and volume reconstruction based on focused ion beam – scanning electron microscopy. LSM-YSZ-pore three-phase boundaries (TPBs) were identified. Approximately 1/3 of the TPBs were found to be electrochemically inactive, as they were on isolated LSM particles, yielding an active TPB density of 4.9 μm?2. Cathode electrochemical modeling, which included a measured YSZ tortuosity of 3.4, yielded an effective TPB resistance of ≈2.5 × 105 Ω cm at 800 °C.  相似文献   

3.
Low temperature prepared(La_(0.8)Sr_(0.2))_(0.9)MnO_3-δ-Y_(0.15)Zr_(0.85)O_(1.93)(LSM-YSZ) nano-composite cathode has high three-phase boundary(TPB) density and shows higher oxygen reduction reaction(ORR) activity than traditional LSM-YSZ cathode at reduced temperatures. But the weak connection between cathode and electrolyte due to low sintering temperature restrains the performance of LSM-YSZ nano-composite cathode. A YSZ interlayer, consisted of nanoparticles smaller than 10 nm, is introduced by spinning coating hydrolyzed YSZ sol solution on electrolyte and sintering at 800 °C. The thickness of the interlayer is about 150 nm. The YSZ interlayer intimately adheres to the electrolyte and shows obvious agglomeration with LSM-YSZ nano-composite cathode. The power densities of the cell with interlayer are 0.83, 0.46 and 0.21 W/cm~2 under 0.7 V at 800, 700 and 600 °C, respectively, which are 36%, 48% and 50% improved than that of original cell. The interlayer introduction slightly increases the ohmic resistance but significantly decreases the polarization resistance. The depressed high frequency arcs of impedance spectra suggest that the oxygen incorporation kinetics are enhanced at the boundary of YSZ interlayer and LSM-YSZ nanocomposite cathode, contributing to improved electrochemical performance of the cell with interlayer.  相似文献   

4.
(La0.8Sr0.2)0.95MnO3?δ (LSM)–Gd0.1Ce0.9O2?δ (gadolinium-doped ceria, GDC) composite cathode material was developed and characterized in terms of chemical stability, sintering behaviour, electrical conductivity, mechanical strength and microstructures to assess its feasibility as cathode support applications in cathode-supported fuel cell configurations. The sintering inhibition effect of LSM, in the presence of GDC, was observed and clearly demonstrated. The mechanical characterization of developed composites revealed that fracture behaviour is directly affected by pore size distribution. The Weibull strength distribution showed that for bimodal pore size distribution, two different fracture rates were present. Furthermore, the contiguity of LSM and GDC grains was calculated with image analysis, and correlation of microstructural features with mechanical and electrical properties was established. Subsequently, an LSM/GDC-based cathode-supported direct carbon fuel cell (DCFC) with Ni/ScSZ (scandia-stabilised zirconia) anode was successfully fabricated via slurry coating and co-firing techniques. The microstructures of electrodes and electrolyte layers were observed to confirm the desired morphology after co-sintering, and a single cell was electrochemically characterized in solid oxide fuel cell (SOFC) and DCFC mode with ambient air as oxidant. The higher values of open-circuit voltage indicated that the electrolyte layer prepared by vacuum slurry coating is dense enough. The corresponding peak power densities at 850 °C were 450 and 225 mW cm?2 in SOFC and DCFC mode, respectively. Electrochemical impedance spectroscopy was carried out to observe electrode polarization and ohmic resistance.  相似文献   

5.
The electrical conductivity, thermoelectrical, and optical properties of the polyaniline containing boron/double wall carbon nanotubes (CNTs) composites have been investigated. The electrical conductivities of the composites prepared with 1%, 5%, and 8% CNT concentrations at 300 K were found to be 5.31 × 10?6, 2.72 × 10?4, and 1.12 × 10?3 (S/cm), respectively. The thermoelectrical results indicate that all the samples exhibit n‐type electrical conductivity. The optical band gaps of the samples were found to be 3.71 eV for 0% DWNT, 3.32 eV for 1% DWNT, 3.15 eV for 5% DWNT, and 3.12 eV for 8% DWNT. The obtained results suggest that the electrical conductivity of PANI‐B polymer is improved by DWNT doping. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
锰酸镧和氧化钇稳定的氧化锆复合阴极的研究   总被引:12,自引:0,他引:12  
用交流阻抗,强极化和电导测量等方法考察了一系列不同氧化钇稳定氧化锆(YSZ)含量的锶掺杂锰酸镧(LSM)复合阴极的电化学性能,发现随着掺入YSZ量的增大,阴极性能大幅度提高,当YSZ质量分数为40%时,电极性能最好,电化学极化电阻约为1.18Ω/cm2.通过分析发现,YSZ的掺杂使电极反应过程的控制步骤发生了变化.同时发现,随着YSZ含量的增加,电极的接触电阻增大.以Pt为电流收集层和40%的YSZ+LSM的复合电极形成的二层电极可有效地消除接触电阻,进一步提高了复合电极的性能.在1223K极化电阻从1.18Ω/cm2下降到0.41Ω/cm2.  相似文献   

7.
《Solid State Sciences》2012,14(6):673-676
Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10−6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10−7 S/m) and TiO2 thin film in air (5 × 10−9 S/m) and in vacuum (8.8 × 10−10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.  相似文献   

8.
Electrically conducting fibers based on coconut fibers (CF) and polyaniline (PANI) were prepared through in situ oxidative polymerization of aniline (ANI) in the presence of CF using iron (III) chloride hexahydrate (FeCl3.6H2O) or ammonium persulfate (APS) as an oxidant. The PANI-coated coconut fibers (CF-PANI) displayed various morphologies, electrical conductivities and percentages of PANI on the CF surface. For both systems, a PANI conductive layer was present on the CF surface, which was responsible for an electrical conductivity of around 1.5 × 10−1 and 1.9 × 10−2 S cm−1 for composites prepared with FeCl3.6H2O and APS, respectively; values that are similar to that of pure PANI. In order to modify the structure and properties of polyurethane derived from castor oil (PU) both CF-PANI and pure PANI were used as conductive additives. The PU/CF-PANI composites exhibited higher electrical conductivity than pure PU and PU/PANI blends. Additionally, the PU/CF-PANI composites showed a variation in electrical resistivity according to the compressive stress applied, indicating that these materials could be applied for pressure-sensitive applications.  相似文献   

9.
A high performance cathode-supported solid oxide fuel cell (SOFC), suitable for operating in weakly humidified hydrogen and methane, has been developed. The SOFC is essentially made up by a YSZ/LSM composite supporting cathode, a thin YSZ film electrolyte, and a GDC-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode. A gas tight thin YSZ film (∼27 μm) was formed during the co-sintering of cathode/electrolyte bi-layer at 1200 °C. The cathode-supported SOFC developed in this study showed encouraging performance with maximum power density of 0.182, 0.419, 0.628 and 0.818 W cm−2 in air/3% H2O–97% H2 (and 0.06, 0.158, 0.221 and 0.352 W cm−2 in air/3% H2O–97% CH4) at 750, 800, 850 and 900 °C, respectively. Such performance is close to that of the cathode-supported cell (0.42 W cm−2 vs. 0.455 W cm−2 in humidified H2 at 800 °C) developed by Yamahara et al. [Solid State Ionics 176 (2005) 451–456] with a Co-infiltrated supporting LSM-YSZ cathode, a (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89 (SYSZ) electrolyte of 15 μm in thickness and a SYSZ/Ni anode, indicating that the performance of the GDC-impregnated LSCM anode is comparable to that made of Ni cermet while stable in weakly humidified methane fuel.  相似文献   

10.
Single fuel cells with bilayer supported cathodes are manufactured and tested. The cathodes consist of a high-porous La0.6Sr0.4MnO3 support with the thickness of approximately 1 mm and a functional composite layer with the thickness of 13?C15 ??m made of La0.75Sr0.2MnO3 and 8YSZ. Voltammetric and power characteristics of single fuel cells with a supported cathode, thin-film YSZ electrolyte, and platinum cathode are determined. The conclusion as to the significant contribution into the polarization overpotential losses on the cathode is made on the basis of the measurements of electric fuel cell characteristics. It decreases significantly as a result of the supported cathode modification by praseodymium oxide. At 850°C and voltage of 0.81 V, electric power density of a fuel cell was 1.65 W/cm2.  相似文献   

11.
Nickel-substituted layered perovskite PrBaCo2 ? x Ni x O5 + δ (PBCN) powders with various proportions of nickel (x?=?0, 0.1, 0.2, and 0.3, abbreviated as PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively) are investigated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) based on the yttria-stabilized zirconia (YSZ) electrolyte. It is found that PBCN-1 has the highest electrical conductivity of 1,397 S cm?1 at 400 °C. Substitution of Co by Ni decreases the thermal expansion coefficient (TEC) clearly. The average TEC at the temperature range of 35–900 °C decreases from 22.8?×?10?6 K?1 for PBCN-0 to 18.9?×?10?6 K?1 for PBCN-3. The polarization resistances of PBCN samples on YSZ electrolyte at 800 °C are 0.053, 0.048, 0.052, and 0.042 Ω cm2 for PBCN-0, PBCN-1, PBCN-2, and PBCN-3, respectively. The single fuel cell with the configuration of PBCN-3/YSZ/Pt delivers the highest power densities of 100, 185, 360, 495, and 660 mW cm?2 at 600, 650, 700, 750, and 800 °C, respectively.  相似文献   

12.
Anti-perovskite manganese nitrides with the general formula Mn3(Cu0.5SixGe0.5?x)N (x = 0.05, 0.1, 0.15, 0.2) were fabricated by mechanical ball milling followed by solid state sintering. The temperature dependence of thermal expansions, magnetic properties and electrical conductivities were investigated in the temperature range of 77–300 K. The results show that the operation-temperature window of negative thermal expansion (NTE) shifts to lower temperature and the magnitude of NTE becomes smaller with increasing Si content. Very low average coefficients of thermal expansion of 1.3 × 10?6 K?1 and 1.65 × 10?6 K?1 were observed in Mn3(Cu0.5Si0.1Ge0.4)N and Mn3(Cu0.5Si0.15Ge0.35)N within the temperature range of 77–300 K, respectively. In addition, the electrical conductivities of all the samples are in the range of 2.5–3.5 × 105 (ohm m)?1.  相似文献   

13.
Novel nano-structured Pd+yttrium doped ZrO2 (YSZ) electrodes have been developed as cathodes of intermediate temperature solid oxide fuel cells (IT-SOFCs). Nano-sized Pd particles were introduced into the rigid and porous YSZ structure by PdCl2 solution impregnation. The results show that Pd nanoparticles (20–80 nm) were uniformly distributed in the porous YSZ structure; and such nano-structured composite cathodes were highly active for the O2 reduction reaction, with polarization resistances (RE) of 0.11 and 0.22 Ω cm2 at 750 and 700 °C and activation energy of 105 kJ mol−1 that is significantly lower than those for the conventional perovskite-based cathodes (130–201 kJ mol−1).  相似文献   

14.
Possible three‐dimensional diffusion pathways of lithium ions in crystalline lithium argyrodites are discussed based on earlier studies of local dynamics and site preferences. The specific Li‐ionic conductivities of the lithium argyrodites Li7PS6 and Li6PS5X (X: Cl, Br, I) and their temperature dependences are measured by impedance spectroscopy using different electron‐blocking and ion‐blocking electrode systems. Measurements were carried out between 160 K and 550 K depending on the respective sample. Bulk and grain boundary contributions and the influence of sample preparation are discussed. Typical values for the ionic conductivities at room temperature are in the range 10–7 to 10–5 S ·  cm–1 and at 500 K between 10–6 and 10–3 S ·  cm–1. Thermal activation energies are in the range 0.16 to 0.56 eV. The electronic conductivity at room temperature was measured by polarization measurements for the samples Li6PS5X (X: Cl, Br) and was shown to be in the order of magnitude of 10–8 S ·  cm–1. Chemical diffusion coefficients of lithium were calculated based on the polarization measurements. For Li6PS5Br a high value of 3.5 × 10–6 cm2 · s–1 was found.  相似文献   

15.
The Fe–Ni–O system designed for producing bimetal-containing composite anodes of solid oxide fuel cells (SOFCs) was studied. The solubility of nickel in the structure of spinel (Fe,Ni)3O4 ± δ at atmospheric oxygen pressure is ~1/3. Moderate reduction at 1023 K and p(O2) ≈ 10–20 atm leads to partial decomposition of spinels, forming an electron-conducting phase (Fe,Ni)1–yO and submicron bimetallic Fe–Ni particles on the oxide surface, which have potentially high catalytic activity. The electron conductivity has a thermally activated character and increases substantially during the reduction. In the anode conditions of SOFCs, the electric conductivity reaches 30–100 S/cm, while the thermal expansion coefficients are ~12 × 10–6 K–1, which ensures compatibility with solid electrolytes. At the same time, significant volume changes during the redox cycling (up to ~1% on the linear scale) necessitate the introduction of additional components such as yttria-stabilized zirconia (YSZ). The polarization resistance of the model composite anode of reduced Fe2NiO4 ± δ and YSZ deposited on the YSZ solid electrolyte membrane was ~1.8 Ohm cm2 at 923 K in a 4% H2–Ar–H2O atmosphere.  相似文献   

16.
The viologen‐type dialdehyde of [N,N′‐bis(methylsalicylaldehyde)‐4,4′‐bipyridinium] dichloride (DA) was synthesized by reacting 5‐chloromethylsalicylaldehyde and 4,4′‐bipyridine. Then a new polymeric Schiff base ligand (PSBL) was synthesized by the condensation reaction of ethylenediamine and DA in methanol under reflux conditions. Afterwards, new ionic metallo‐Schiff base polymers (IMSPs) were synthesized by reacting PSBL with VO(acac)2, ZnCl2 and CuCl2 via coordination chelation. DA, PSBL and IMSPs were characterized using various analytical methods and spectral techniques. The solid‐state electrical conductivities of PSBL and IMSPs were studied. The electrical conductivity of these polymers at 300 K ranged from 1.30 × 10?5 to 4.52 × 10?10 Ω?1 m?1, which means they are potential organic and metallo‐organic semiconductors.  相似文献   

17.
This study is focused on characterization of the low temperature properties of the YSZ/STO/YSZ superlattice film deposited onto unilateral polished SrTiO3 (STO) monocrystalline substrates using pulsed laser deposition (PLD). The phase composition, structure, surface morphology and electrical properties of the oxygen ion conducting electrolyte YSZ/STO/YSZ multilayers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The minimum conductivity activation energy of YSZ/STO/YSZ is 0.76 eV at 300–500°C. The YSZ/STO/YSZ superlattice film shows an enhancement in conductivity by three orders of magnitude compared to bulk YSZ at a temperature of 300°C.  相似文献   

18.
The impedance of the La0.75Sr0.2MnO3-cathode/electrolyte interface for cathodes with different porosity is measured. The impedance spectra are fitted using a developed model of the oxygen transport at this interface. After the measurements, the cathode is removed from the electrolyte. The contact area and the three-phase boundary length (TPBL) at the interface are estimated from SEM images of the electrolyte surface. The dependence of the interfacial electrical resistance on the microstructure is discussed. It is shown that the bulk diffusion of oxygen vacancies at the interface at 950°C is high enough to use the whole La0.75Sr0.2MnO3/YSZ contact area F for the oxygen transport into the electrolyte for microstructures with 2F/TPBL 2 m. The impact of the surface diffusion of oxygen species on polarization resistance at operation temperatures <900°C is discussed. The polarization resistance and the morphology of composite cathodes made from La0.75Sr0.2MnO3/YSZ and yttria- or scandia-stabilized zirconia powders (3YSZ, 8YSZ, 10ScSZ) are investigated by impedance spectroscopy at 800–950°C. The polarization (interfacial) resistance decreases gradually with addition of electrolyte powder in the uLSM cathode material independent of the electrolyte powder used. The interfacial resistance of the uLSM/3YSZ, uLSM/8YSZ, and uLSM/10ScSZ composite cathodes is almost the same. The interaction between uLSM and doped zirconia particles is discussed on the basis of the interfacial resistance, activation energies, and high-frequency impedance.  相似文献   

19.
This work investigated the effect of Potassium Permanganate (KMnO4) on graphene oxide (GO) properties, especially on electrical properties. The GO thin films were deposited on a glass substrate using drop casting technique and were analysed by using various type of spectroscopy (e.g. Scanning Electron Microscopy (SEM), Ultra- Violet Visible (UV–VIS), Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), optical band gap, Raman Spectroscopy). Furthermore, the electrical experiments were carried out by using current–voltage (I-V) characteristic. The GO thin film with 4.5 g of KMnO4 resulted in higher conductivity which is 3.11 × 10?4 S/cm while GO with 2.5 g and 3.5 g of KMnO4 achieve 2.47 × 10?9 S/cm and 1.07 × 10?7 S/cm, respectively. This further affects the morphological (SEM), optical (band gap, UV–Vis, FTIR, and Raman), and crystalline structural (XRD) properties of the GO thin films. The morphological, elemental, optical, and structural data confirmed that the properties of GO is affected by different amount of KMnO4 oxidizing agent, which revealed that GO can potentially be implemented for electrical and electronic devices.  相似文献   

20.
Poly(bis-m-phenylenediaminosulphoxide) (PPDS) was prepared from Michael addition of N,N′-bis-sulphinyl-m-phenylenediamine and m-phenylenediamine. The prepared PPDS was then doped with iodine. PPDS was characterized by FTIR, 1H-NMR, elemental microanalysis, thermogravimetric analysis (TGA), UV-visible absorption and fluorescence emission spectra. Thermal gravimetric analysis TGA showed that PPDS is thermally stable up to 179 °C. Electronic transitions showed main absorption peak at λ = 340 nm and two emission peaks at 460 and 490 nm. The behavior of both dc and ac electrical conductivities of PPDS were studied. The direct current electrical conductivity (σdc) and the alternating current electrical conductivity (σac) were enhanced by the physical doping of I2 in the polymer matrix. The conduction mechanisms for dc and ac electrical conductivities have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号