首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
卤化物钙钛矿不仅具有光吸收系数高、激子束缚能低、载流子迁移率高等优异的光电性能,而且具有缺陷容忍度高、低温溶液法生长、带隙可调等传统半导体不具备的优点,迅速成为光电领域的研究热点之一。 在单个光电器件的基础上,开发阵列型器件将推动卤化物钙钛矿在(柔性)光电器件中的应用。 但卤化物钙钛矿因对常规有机溶剂较敏感而与现有光刻工艺不兼容,开发适合卤化物钙钛矿的微纳制作工艺尤为重要。 本文系统归纳了近年卤化物钙钛矿微纳阵列制备采用的各种策略和方法,分析了不同方法的优缺点和适用性,介绍了卤化物钙钛矿微纳阵列在光电领域的应用,并对该领域目前存在的问题及发展前景进行了展望,以期为新型卤化物钙钛矿光电器件的研究提供参考。  相似文献   

3.
无机铅卤钙钛矿CsPbX3(X=Cl,Br,I)纳米晶因具有较高荧光量子效率(~90%)、发光波长覆盖整个可见光谱(400~700 nm)、半高宽相对较窄(12~42 nm)等诸多优点而备受关注,这些性能使之成为当前最具有潜在应用价值的发光材料之一。 因此,近年来对该类无机铅卤钙钛矿材料的报道越来越多。 本文主要介绍了无机铅卤钙钛矿发光材料的发展历程、结构、制备方法、生长机理及当前的主要应用领域等,最后概括了无机铅卤钙钛矿发光材料在当前研究背景下所面临的问题并展望了下一阶段的发展方向,为进一步提高其光学性能及开发新型高效的无机铅卤钙钛矿发光材料奠定基础。  相似文献   

4.
钙钛矿纳米材料的研究取得了飞速发展:一方面,合成方法不断涌现,已经可以实现从零维纳米晶、一维纳米线到二维纳米片的形貌精确控制,对其尺寸和维度依赖的光学性质认识也不断深入;另一方面,钙钛矿纳米材料的光学和光电子应用也得到了快速发展,其中,基于钙钛矿量子点的光致发光和电致发光技术最受关注。 由于钙钛矿的天然层状结构,通过配体调控很容易制备出二维纳米材料,其发光性能可以通过层数和组分进行调节,最高量子产率超过85%,且具有偏振发光特性,有望成为一类新型发光材料。 本文从制备方法、光致发光和电致发光应用等方面综述了基于钙钛矿二维纳米材料的进展,并对其未来的发展方向进行讨论。  相似文献   

5.
Metal halide perovskites are emerging as new generation optoelectronic materials due to their high carrier mobility, long carrier diffusion length and large light absorption coefficient, which have broad applications in solar cell, light‐emitting diode, laser, photodetector and transistors. Perovskite single crystal is an ideal platform for discerning the intrinsic properties of these materials. In some cases, perovskite single crystals are better candidates to gain high performance optoelectronics. However, the growth of perovskite single crystals is time and cost consuming, which has an obvious disadvantage for device exploration. Therefore, fast growth technique is highly desirable in not only promoting the use of perovskites in commercial applications but also facilitating deep physical investigation of the materials. In this review, we summarize thoroughly the development of fast growth of the halide perovskites single crystal. Specifically, we highlight the progress of rapid growth techniques with emphasis on the optimization control.  相似文献   

6.
卤化钙钛矿由于具有低成本、高效率等特点,最近作为非常有前景的太阳能电池吸收层材料被广泛研究。卤化钙钛矿型太阳能电池效率在短短的几年间由3.8%(2009年)迅速增加到22.1%(2016年)。卤化钙钛矿型太阳能电池的出现彻底改变了太阳能电池领域,不仅因为它们快速增长的效率,而且因为它们在材料生长和结构方面的可控性。卤化钙钛矿型太阳能电池的优越性能说明卤化钙钛矿材料具有独特的物理性质。在本综述中,我们总结了卤化钙钛矿材料最近几年在结构、电学、光学方面的理论研究成果,这些都与它们在太阳能电池方面的应用密切相关。我们也将探讨一些卤化钙钛矿型太阳能电池目前遇到的挑战以及可能的理论解决途径。  相似文献   

7.
The chemical instability of metal halide perovskite materials can be ascribed to their unique properties of softness, in which the chemical bonding between metal halide octahedral frameworks and cations is the weak ionic and hydrogen bonding as in most perovskite structures. Therefore, various strategies have been developed to stabilize the cations and metal halide frameworks, which include incorporating additives, developing two-dimensional perovskites and perovskite nanocrystals, etc. Recently, the important role of utilizing steric hindrance for stabilizing and passivating perovskites has been demonstrated. In this perspective, we summarize the applications of steric hindrance in manipulating and stabilizing perovskites. We will also discuss how steric hindrance influences the fundamental kinetics of perovskite crystallization and film formation processes. The similarities and differences of the steric hindrance between perovskite solar cells and perovskite light emission diodes are also discussed. In all, utilizing steric hindrance is a promising strategy to manipulate and stabilize metal halide perovskites for optoelectronics.

Manipulation on steric hindrance can influence the fundamental kinetics of perovskite crystallization and film formation, therefore stabilizing and passivating perovskite structures, and promoting the commercialization of stable perovskite devices.  相似文献   

8.
Perovskite solar cells (PSCs) fabricated with two-dimensional (2D) halide and 2D-3D mixed-halide materials are remarkable for their optoelectronic properties. The 2D perovskite structures are extremely stable but show limited charge transport and large bandgap for solar cell applications. To overcome these challenges, multidimensional 2D-3D perovskite materials are used to maintain simultaneously, a long-term stability, and high performance. In this review, we discuss the recent progress and the advantages of 2D and 2D-3D perovskite materials as absorber for solar cell applications. First, we discuss the structure and the unique properties of 2D and multidimensional 2D-3D perovskites materials. Second, the stability of 2D and 2D-3D mixed perovskites and the perspects of PSCs are hashed out.  相似文献   

9.
Metal halide perovskite single crystals are promising for diverse optoelectronic applications. As a universal issue of solution-grown perovskite single crystals, surface contamination causes adverse effect on material properties and device performance. Herein, learning from the self-cleaning effect of lotus leaf, we address the surface contamination issue by introducing an amphiphilic long-chain organic amine into the perovskite crystal growth solution. Self-assembly of CTAC provides a hydrophobic crystal surface, inducing spontaneous removal of residual growth solution, which results in clean surface and better optoelectronic properties of perovskite single crystals. An impressive efficiency of 23.4 % is obtained, setting a new record for FAxMA1-xPbI3 single-crystal perovskite solar cells (PSCs). Moreover, our strategy also applies to perovskite single crystals with different morphology and composition, which may contribute to improvement of other single-crystal perovskite optoelectronic devices.  相似文献   

10.
铅卤钙钛矿材料由于其优异的光电性质而受到了广泛关注. 但是, 材料中铅的毒性问题极大地阻碍了其大规模应用. 因此, 寻找与铅卤钙钛矿具有相似光电性质的非铅卤化物钙钛矿材料十分重要. 其中, 锡基卤化物钙钛矿被认为是铅基钙钛矿材料最佳的替代材料之一. 本文通过简便的反溶剂方法, 合成了一系列新型二维(RNH3)2SnX4(R为烷基链, X=Br-, I-)钙钛矿材料. 研究结果表明, 所合成的材料具有优异的荧光发射性质, 发光量子效率高达98.5%, 比三维ASnX3[A=Cs+, 甲胺(MA+), 甲脒(FA+)等]型钙钛矿表现出更好的稳定性. 本文所采用的合成方法简单易行, 有利于实现金属卤化物钙钛矿材料的大规模合成及在固态照明器件和显示器件领域的工业应用.  相似文献   

11.
Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.  相似文献   

12.
金属卤化物钙钛矿作为一类新型的离子型直接带隙半导体材料在电致发光二极管(LED)中有着重要应用前景. 但实现其应用的前提在于金属卤化物钙钛矿材料需要保持高的发光效率和好的稳定性. 为了提高金属卤化物钙钛矿作为LED发光层的激子结合效率, 从而提升其发光效率, 设计和合成金属卤化物钙钛矿纳米晶材料是一个有效途径. 目前, 基于纳米晶材料设计的金属卤化物钙钛矿LED在绿光和红光(包括近红外光)范围已经展现了高的发光亮度和外量子效率(EQE), 其中最高EQE已经超过了20%, 但其稳定性仍无法满足器件应用的要求. 此外, 更值得关注且更重要的是, 蓝光钙钛矿LED的发光亮度和EQE目前仍然不高. 如何制备高效、 稳定的金属卤化物钙钛矿纳米晶LED, 特别是蓝光LED, 是一个具有重大应用前景且具有挑战性的课题. 本文重点介绍了金属卤化物钙钛矿纳米发光层的结构设计和合成方法及金属卤化物钙钛矿LED的研究进展, 分析了金属卤化物钙钛矿LED不稳定的原因, 并对金属卤化物钙钛矿LED研究面临的挑战和未来发展方向进行了总结与展望.  相似文献   

13.
This review focuses on the recent developments in synthesis, properties, and applications of a relatively new family of photoactive porous composites, integrated by metal halide perovskite (MHP) nanocrystals and metal-organic frameworks (MOFs). The synergy between the two systems has led to materials (MHP@MOF composites) with new functionalities along with improved properties and phase stability, thus broadening their applications in multiple areas of research such as sensing, light-harvesting solar cells, light-emitting device technology, encryption, and photocatalysis. The state of the art, recent progress, and most promising routes for future research on these photoactive porous composites are presented in the end.  相似文献   

14.
Organic metal halide perovskite materials have excellent photoelectric properties, and the power conversion efficiency(PCE) of the perovskite solar cells(PSCs) has increased from 3.8% to more than 25%. In the development of PSCs, innovative architectures were being proposed constantly. However, the use of the electron transport layer(ETL) and hole transport layer(HTL) increases manufacturing costs and process complexity. Perovskite material has ambipolar charge transport characteristics, so it c...  相似文献   

15.
Molecular ferroelastics have received particular attention for potential applications in mechanical switches, shape memory, energy conversion, information processing, and solar cells, by taking advantages of their low-cost, light-weight, easy preparation, and mechanical flexibility. The unique structures of organic–inorganic hybrid perovskites have been considered to be a design platform for symmetry-breaking-associated order–disorder in lattice, thereby possessing great potential for ferroelastic phase transition. Herein, we review the research progress of organic–inorganic hybrid perovskite ferroelastics in recent years, focusing on the crystal structures, dimensions, phase transitions and ferroelastic properties. In view of the few reports on molecular-based hybrid ferroelastics, we look forward to the structural design strategies of molecular ferroelastic materials, as well as the opportunities and challenges faced by molecular-based hybrid ferroelastic materials in the future. This review will have positive guiding significance for the synthesis and future exploration of organic–inorganic hybrid molecular ferroelastics.  相似文献   

16.
金属卤化钙钛矿由于具有优异的光电性能(如:高电子/空穴迁移率,高荧光量子产率,高色纯度,以及光色可调性等),成为应用于发光二极管(LED)的理想材料。近年来,钙钛矿LED的发展十分迅速,红光和绿光钙钛矿LED的外量子效率(EQE)均已超过20%。然而,蓝光(尤其是深蓝光)钙钛矿LED的EQE以及稳定性依然相对落后,这严重制约了钙钛矿LED在高性能、广色域显示领域和高显色指数白光照明领域的应用。因此,总结现阶段蓝光钙钛矿LED的发展,并剖析其机遇与挑战,对未来蓝光甚至整个钙钛矿LED领域的发展至关重要。本文将蓝光钙钛矿LED根据光色细分为天蓝光、纯蓝光、深蓝光三大部分进行总结,回顾了三种LED器件的发展历程,并详细阐述了现阶段实现他们的主要手段以及相关的基础原理,最后分析了它们各自的问题并提出了相应的解决思路。  相似文献   

17.
Single crystals of organolead halide perovskites attract much attention to electrooptical and photovoltaic applications. They are usually prepared in precursor solutions incubated at controlled temperatures or under optimized vapor atmosphere conditions, and thus, multiple perovskite crystals are nucleated all over the solution. Multiple nucleation of crystals prevents efficient use of precursors in the preferential growth of large single crystals. An innovative approach is presented for spatiotemporally controlled, selective nucleation and growth of single crystals of lead halide perovskites by optical trapping with a focused laser beam. Upon such trapping in unsaturated precursor solutions, nucleation of MAPbX3 (MA=CH3NH3+; X=Cl?, Br?, or I?) is induced at the focal spot through increase in the concentration of perovskite precursors in the focal volume. The rate at which the nucleated crystal grows depends upon whether the perovskite absorbs the trapping laser or not. These findings suggest that optical trapping would be useful to prepare various perovskite single crystals and modify their optical and electronic properties; thereby, offering new methods for engineering of perovskite crystals.  相似文献   

18.
Lead‐free perovskite structures have been recently attracting considerable attention because of their eco‐friendly nature and properties, such as their lead‐based structure. In this work, we reviewed the lead‐free double perovskite (LFDP) structure because of its unique electronic dimensions, chemical stability, and substitutional chemistry compared with other lead‐free structures. We highlighted the recent progress on crystal structure prediction, synthesis methods, metal dopants, and ligand passivation on LFDPs. LFDPs are useful for several applications, such as solar cells, light‐emitting diodes, degradation of photocatalytic dyes, sensors, and X‐ray detectors. This report provides a summary of recent progress as a reference for further research on lead‐free perovskite structures.  相似文献   

19.
Hybrid organic‐inorganic perovskite solar cells (PSCs) have become a shining star in the photovoltaic field due to their spectacular increase in power conversion efficiency (PCE) from 3.8 % to over 23 % in just few years, opening up the potential in addressing the important future energy and environment issues. The excellent photovoltaic performance can be attributed to the unique properties of the organometal halide perovskite materials, including high absorption coefficient, tunable bandgap, high defect tolerance, and excellent charge transport characteristics. The authors entered this field when pursuing research on dye‐sensitized solar cells (DSCs) by leveraging nanorods arrays for vectorial transport of the extracted electrons. Soon after, we and others realized that while the organometal halide perovskite materials have excellent intrinsic properties for solar cells, interface engineering is at least equally important in the development of high‐performance PSCs, which includes surface defect passivation, band alignment, and heterojunction formation. Herein, we will address this topic by presenting the historical development and recent progress on the interface engineering of PSCs primarily of our own group. This review is mainly focused on the material and interface design of the conventional n‐i‐p, inverted p‐i‐n and carbon electrode‐based structure devices from our own experience and perspective. Finally, the challenges and prospects of this area for future development will also be discussed.  相似文献   

20.
In recent years, there have been rapid advances in the synthesis of lead halide perovskite nanocrystals (NCs) for use in solar cells, light emitting diodes, lasers, and photodetectors. These compounds have a set of intriguing optical, excitonic, and charge transport properties, including outstanding photoluminescence quantum yield (PLQY) and tunable optical band gap. However, the necessary inclusion of lead, a toxic element, raises a critical concern for future commercial development. To address the toxicity issue, intense recent research effort has been devoted to developing lead‐free halide perovskite (LFHP) NCs. In this Review, we present a comprehensive overview of currently explored LFHP NCs with an emphasis on their crystal structures, synthesis, optical properties, and environmental stabilities (e.g., UV, heat, and moisture resistance). In addition, strategies for enhancing optical properties and stabilities of LFHP NCs as well as the state‐of‐the‐art applications are discussed. With the perspective of their properties and current challenges, we provide an outlook for future directions in this rapidly evolving field to achieve high‐quality LFHP NCs for a broader range of fundamental research and practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号