首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
3.
Background: Platelet-rich fibrin (PRF) has gained popularity in craniofacial surgery, as it provides an excellent reservoir of autologous growth factors (GFs) that are essential for bone regeneration. However, the low elastic modulus, short-term clinical application, poor storage potential and limitations in emergency therapy use restrict its more widespread clinical application. This study fabricates lyophilised PRF (Ly-PRF), evaluates its physical and biological properties, and explores its application for craniofacial tissue engineering purposes. Material and methods: A lyophilisation method was applied, and the outcome was evaluated and compared with traditionally prepared PRF. We investigated how lyophilisation affected PRF’s physical characteristics and biological properties by determining: (1) the physical and morphological architecture of Ly-PRF using SEM, and (2) the kinetic release of PDGF-AB using ELISA. Results: Ly-PRF exhibited a dense and homogeneous interconnected 3D fibrin network. Moreover, clusters of morphologically consistent cells of platelets and leukocytes were apparent within Ly-PRF, along with evidence of PDGF-AB release in accordance with previously reports. Conclusions: The protocol established in this study for Ly-PRF preparation demonstrated versatility, and provides a biomaterial with growth factor release for potential use as a craniofacial bioscaffold.  相似文献   

4.
A number of modern technological applications require a detailed calculation of the physical properties of aggregated aerosol particles. For example, in probing soot aerosols by the method called laser-induced incandescence (LII), the soot clusters are suddenly heated by a short, powerful laser pulse and then cool down to the temperature of the carrier gas. LII sizing is based on rigorous calculation of the soot aggregate heat-up and cooling and involves prediction of laser light absorption and energy and mass transfer between aggregated particles and the ambient gas. This paper describes results of numerical simulations of the mass or energy transfer between the gas and fractal-like aggregates of N spherical particles in either the free-molecular or continuum regime, as well as the light scattering properties of random fractal-like aggregates, based on Rayleigh-Debye-Gans (RDG) theory. The aggregate geometries are generated numerically using specially developed algorithms allowing "tuning" of the fractal dimension and prefactor values. Our results are presented in the form of easily applicable scaling laws, with special attention paid to relations between the aggregate gyration radius and the effective radius describing various transport processes between the aggregates and the carrier gas. Copyright 2000 Academic Press.  相似文献   

5.
6.
A search in PubMed revealed that 72 radionuclides have been considered for molecular or functional targeted radionuclide therapy. As radionuclide therapies increase in number and variations, it is important to understand the role of the radionuclide and the various characteristics that can render it either useful or useless. This review focuses on the physical characteristics of radionuclides that are relevant for radionuclide therapy, such as linear energy transfer, relative biological effectiveness, range, half-life, imaging properties, and radiation protection considerations. All these properties vary considerably between radionuclides and can be optimised for specific targets. Properties that are advantageous for some applications can sometimes be drawbacks for others; for instance, radionuclides that enable easy imaging can introduce more radiation protection concerns than others. Similarly, a long radiation range is beneficial in targets with heterogeneous uptake, but it also increases the radiation dose to tissues surrounding the target, and, hence, a shorter range is likely more beneficial with homogeneous uptake. While one cannot select a collection of characteristics as each radionuclide comes with an unchangeable set, all the 72 radionuclides investigated for therapy—and many more that have not yet been investigated—provide numerous sets to choose between.  相似文献   

7.
Within the last two decades major progress has been achieved in understanding the adsorption and phase behavior of fluids in ordered nanoporous materials and in the development of advanced approaches based on statistical mechanics such as molecular simulation and density functional theory (DFT) of inhomogeneous fluids. This progress, coupled with the availability of high resolution experimental procedures for the adsorption of various subcritical fluids, has led to advances in the structural characterization by physical adsorption. It was demonstrated that the application of DFT based methods on high resolution experimental adsorption isotherms provides a much more accurate and comprehensive pore size analysis compared to classical, macroscopic methods. This article discusses important aspects of major underlying mechanisms associated with adsorption, pore condensation and hysteresis behavior in nanoporous solids. We discuss selected examples of state-of-the-art pore size characterization and also reflect briefly on the existing challenges in physical adsorption characterization.  相似文献   

8.
Liquid marbles (LMs) are liquid droplets coated with a layer of lyophobic particles at the air-liquid interface. Since the pioneering work by Aussillous et al. in 2001, LMs have attracted significant attention owing to their facile fabrication, flexibility in the choice of the constituent particles and liquids, intriguing properties such as non-wetting and non-adhesive nature, satisfactory elasticity and stability, as well as promising applications in microfluidics, sensors, controlled release, and microreactors. The classical strategy for the preparation of LMs involves rolling a small volume of a droplet on a lyophobic powder bed for complete encapsulation of the liquid by the particles. In addition, various innovative methods, including electrostatic and coalescent approaches, have been developed for preparing special LMs with a complicated structure or morphology. Diverse materials such as water, surfactant solutions, liquid metals, reagents, blood, and even viscous adhesives have been employed as the internal liquid for the fabrication of LMs. Theoretically, any particulates such as lycopodium, polytetrafluoroethylene, Fe3O4, SiO2, and graphite grains can be employed as the outer coating, but they are usually required to be lyophobic with sizes of less than hundreds of microns. The unique structure of the particle-covered droplet and the dual solid-liquid characteristics endow LMs with some unique and interesting properties, especially the non-wetting and non-adhesive nature. As the lyophobic coating particles restrain the internal liquid from contacting the substrate, LMs can move easily across either solid or liquid surfaces, neither wetting the substrate nor contaminating the internal liquid. An equally fascinating property of LMs is their satisfactory stability, which is necessary for most of their applications. The high stability of LMs stems from the protection of the coating powders and is embodied in both good mechanical stability (remaining intact after being released from a certain height or under a certain compression) and long lifetime (greatly suppressing the evaporation of the internal liquid). These extraordinary properties make LMs promising candidates for use in multitudinous fields, especially droplet microfluidics and microreactors. The potential application of LMs in microfluidics is ascribed to their non-wetting, non-adhesive nature and other features such as an ability to float on a liquid surface, coalescence, split, a small force of rolling friction, and response to external forces. Notably, LMs hold great promise for applications in microreactions, because they can create a confined reaction microenvironment, minimize reagent usage, facilitate unhindered gas exchange between the internal liquid medium and the surrounding environment, and allow the entry/exit of the reactants/products. We herein review the recent advances in LMs, such as manufacturing techniques, formation mechanisms, physical properties, and emerging applications. In particular, much attention is paid to the factors affecting the stability of LMs and the potential strategies to increase their stability. Moreover, this review discusses the challenges in the future development of LMs, suggests several possible ways of addressing these challenges, and forecasts the future development directions. We believe that this review can help researchers gain a better understanding of LMs and promote their further advances.  相似文献   

9.
10.
Creep and differential scanning calorimetry (DSC) measurements have been used to study the physical aging behavior of a polyetherimide. Isothermal aging temperatures ranged from 160°C to Tg with aging times ranging from 10 min to 8 days. The only measurable effect of physical aging on the short-time creep curves is a shift of the creep compliance to longer times. Andrade plots of the compliance versus the cube root of time are linear at short times with the slope β decreasing with increasing aging time to a constant value once equilibrium is reached. Log β3 is related directly to the degree to which the creep curves shift to longer times with physical aging, and is used in this work as a measure of physical aging. A reduced curve of log β3 versus log aging time is obtained for the aging temperatures investigated by appropriate vertical and horizontal shifts. The enthalpy change during aging increases linearly with the logarithm of the aging time, ta, leveling off at equilibrium at values which increase with decreasing aging temperature. Hence, both nonequilibrium and equilibrium temperature shift factors can be calculated from the DSC data. Good agreement is observed between the equilibrium temperature shift factors obtained from the creep and DSC data. The temperature dependence of the nonequilibrium temperature shift factors is found to be an order of magnitude smaller than that of the equilibrium shift factors. The time scales to reach equilibrium for enthalpy and for mechanical measurements are found to be the same within experimental error. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
12.
Anthrathiadiazole is a key synthon for the construction of large azaacenes, however, the attachment of different substituents onto the skeleton of anthrathiadiazole is difficult but highly desirable because it could be easy to enrich the structures of azaacenes. Here, it is demonstrated that anthrathiadiazole derivatives with −Br, −CN, and −OCH3 groups could be easily constructed through a simple [4+2] cycloaddition reaction between a,a,a’,a’-tetrabromo-o-xylenes derivatives and benzo[c][1,2,5]thiadiazole-4,7-dione. The structures of the as-prepared compounds with different substituents were carefully characterized. Moreover, the basic physical properties of the as-prepared anthrathiadiazole derivatives were fully investigated, where the cyano-substituted derivative (BTH - CN) has the highest stability and the methoxy-substituted derivative ( BTH - OCH3) is easy to be oxidized. Moreover, the two-photon absorption (TPA) characteristics of different anthrathiadiazoles are also studied by using the femtosecond Z-scan technique. The results show that the fused anthrathiadiazole skeletons possess large TPA cross-section values δ2 in the range of 3000–5000 GM, where the nature, position and strength of the substituted groups have strong effect on these values.  相似文献   

13.
Densities, refractive indices, viscosities, dielectric constants and the absorptions of several solvatochromic indicators have been determined at 25°C for mixtures of N,N-dimethyl-N,N-propyleneurea (DMPU) and water in the complete mole fraction scale. the results are compared with the properties of hexamethylphosphotriamide (HMPT) and its mixtures with water which show a striking similarity to DMPU and its mixtures with water. Since HMPT was found to be carcinogenic in animal tests, DMPU offers a suitable substitute since it may be regarded as safe under laboratory conditions.  相似文献   

14.
The Physical Chemistry On-Line (PCOL) consortium has developed and conducted a series of short-term projects for use in the physical chemistry curriculum. The projects involve faculty and students from geographically dispersed institutions, are short in duration (~4–6 weeks), and use email and the World Wide Web for communication and information distribution. They are designed to enhance physical chemistry at colleges and universities that may have limited resources available for physical chemistry by offering an alternate pedagogical approach. This paper will highlight the motivations of the participants, outline the specific projects used to date, and provide some evaluation of the pedagogical effectiveness of the approach.  相似文献   

15.
The article is dealing with the dependency of physical and chemical properties on size and coating of gold nanoparticles (Au NPs) and their potential in medicine. Full-shell clusters of the type Au55(PR3)12Cl6 are in the focal point due to their special properties. They act as quantum dots at room temperature and their stability is based on the perfect cuboctahedral structure. The bioresponse of the 1.4 nm Au55 clusters is, compared with smaller and larger Au NPs, very special, indicated by high cytotoxicity. It is caused by oxidative stress in cells accompanied by direct interactions with DNA. Biodistribution in Wistar–Kyoto rats differs also characteristically from larger Au NPs. Larger Au NPs, intravenously injected, assemble almost quantitatively in the liver, whereas Au55 clusters distribute over numerous other organs. All comparisons have been carried out by Au species with identical ligand molecules in order to have the same conditions concerning surface behaviour.  相似文献   

16.
In high-throughput screening, the immobilization of bio-target shows a significant effect on the target performance, especially the conformation. This, ultimately, has an influence on the screening quality. In present article, a series of mathematical and physical models for target immobilization were established. As shown, in the immobilization process, if the plot of C */Q versus C * is a straight-line, the drugs obtained from in vitro screening are probably applicable to in vivo environment. Otherwise, when the linearity exists between ln Q or Q and ln C *, particularly between Q and ln C *, additional competition-experiments of known ligands are necessary. In addition, the immobilization in multilayer form, as well as its impact on screening quality, was also discussed in this article (C *, the equilibrium concentration of bio-target; Q, the adsorbance).  相似文献   

17.
The synthesis, characterization and some physical properties of polyvinyl chloride-g-styrene) are described. The graft copolymer was prepared by initiating the polymerization of styrene with polyvinyl chloride) in conjunction with Et2AlCl. Graft copolymer characterization involved GPC, T, heatstability, and intrinsic viscosity studies. Among the physical properties stress-strain and impact strength measurements have been carried out.  相似文献   

18.
19.
The basicity of hydrazides of the highest aliphatic carboxylic acids RC(O)NHNH2 (R = CnH2n+1,n = 5-12) has been studied by potentiometric titration, and IR and1H NMR spectroscopy.Ab initio Hartree-Fork calculations using the 6–31G* basis set with full optimization of geometry were carried out on the simplest acy1hydrazines and their possible protonated forms. Based on these calculations, and the 1R and1H NMR spectra, the tautomerism of alkylhydrazides and the structures of their protonated forms are discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2645–2649, November, 1996.  相似文献   

20.
伴随建系而生的吉林大学物理化学学科是吉大化学学科的重要组成部分,在70年的发展中为整个化学学科的发展建设做出了重要贡献。吉大物化人一直坚持理论与实践并重的教育思想,培养了大批优秀人才。回顾了吉大物理化学学科的历史沿革,展现了吉林大学化学学院物理化学在课程和教材建设、科学研究和人才培养等方面所取得的成绩。在吉大化学70周年华诞之际,谨以此文向为吉大物化学科建设做出贡献的前辈致敬。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号