首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis of molecularly defined epsilon-caprolactone oligomers and polymers up to the 64-mer, via an exponential growth strategy, is described. By careful selection of orthogonal protecting groups, t-butyldimethylsilyl (TBDMS) ether for the hydroxyl group and benzyl (Bn) ester for the carboxylic acid group, a highly efficient synthetic strategy was developed with yields for both deprotection steps being essentially quantitative and for the coupling reactions using 1,3-dicyclohexylcarbodiimide (DCC), yields of 80-95% were obtained even at high molecular weights. This allows monodisperse dimers, tetramers, octamers, 16-mers, 32-mers and 64-mers to be prepared in gram quantities and fully characterized using mass spectroscopy, size exclusion chromatography (SEC), and IR and NMR spectroscopy. Thermal and physical properties were measured using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). These results conclusively show a distinct structure/property relationship with a close correlation between the number of repeat units and physical properties. In addition, a number of marked differences were observed on comparison with the parent poly(caprolactone) polymer.  相似文献   

2.
《Analytical letters》2012,45(8):1443-1458
Abstract

A collection of molecularly imprinted polymer microspheres (MIPMs) for Enrofloxacin (ENRO) were for the first time obtained through suspension polymerization in this work. The appropriate MIPMs used as specific SPE adsorbents were selected based on evaluation of binding capacities and morphology characterization. Combined with one simpler MISPE procedure for cleanup and preconcentration of ENRO in milk, further HPLC-UV analysis showed improved sensitivity of 10 µg kg?1 than those reported in previous studies, with the desirable recoveries of 73.6–101.6%, proving that the developed MIPMs are applicable for extraction of ENRO during the process of sample preparation.  相似文献   

3.
4.
Yoshimura Y  Fujimoto K 《Organic letters》2008,10(15):3227-3230
We describe a novel ultrafast reversible DNA interstrand photo-cross-linking reaction via 3-cyanovinylcarbazole nucleoside ( (CNV)K). Oligodeoxynucleotide (ODN) containing (CNV)K can be photo-cross-linked by irradiation at 366 nm for 1 s, and the photo-cross-linked ODN can be split by irradiation at 312 nm for 60 s.  相似文献   

5.
Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCI etching followed by ammonia neutralization. The structure, morphology, surface area, and photocatalytic properties of the prepared samples were studied. After treatment, the size of the g-C3N4 decreased from several micrometers to several hundred nanometers, and the specific area of the g-C3N4 increased from 11.5 m2/g to 115 m2/g. Meanwhile, the photocatalytic activity of g-C3N4 was significantly improved after treatment toward degradation of 4- nitrophenol under visible light irradiation. The degradation rate constant of the small particle g-C3N4 is 5.7 times of that of bulk g-C3N4, which makes it a promising visible light photocatalyst for future applications for water treatment and environmental remediation.  相似文献   

6.
7.
Luo J  Zhang L  Chen D  Wang P  Zhao J  Peng Y  Du S  Zhang Z 《The Analyst》2012,137(12):2891-2902
This paper reports the preparation of puerarin (PR) imprinted layer-coated silica microparticles toward selective recognition of PR and fast affinity-enrichment of the main isoflavonoid glycosides from the crude extract of Radix puerariae. Before the preparation, quantum mechanics (QM) method was applied to identify three kinds of common functional monomers capable of interaction with PR and then predicted optimal functional monomer (acrylamide, AA) and the relative molar ratio of template to functional monomer (PR/AA, 1:4). The obtained PR-imprinted silica microparticles were evaluated by transmission electron microscope (TEM) and rebinding experiments, exhibiting good morphology and high binding affinity to PR. Meanwhile, the rebinding amount of the imprinted microparticles to PR was nearly 2.1-folds that of non-imprinted microparticles. When the PR-imprinted microspheres were used as packing materials for solid-phase extraction, the recovery yields of PR, daidzin (DD) and genistin (GS) were simultaneously up to 90% by one-step extraction from the crude extract of Radix puerariae. Additionally, the PR-imprinted microparticles could be re-used for at least 5 times without losing any extraction efficiency. These results indicate that the PR-imprinted microparticles have highly selective adsorption capabilities to PR, DD and GS from the crude extract of Radix puerariae. The method of molecularly imprinted polymers (MIPs) coupled with solid-phase extraction (SPE) provides a good solution of the enrichment and separation of active extracts from complicated traditional Chinese medicine (TCM) with certain structures.  相似文献   

8.
The synthesis of (L )‐lactide oligomers from dimer to 64mer via an exponential growth strategy is described. By careful selection of orthogonal protective groups, the synthesis were conducted using a t‐butyldimethylsilyl (TBDMS) ether as the protective group of the hydroxyl group and benzyl (Bn) ester as the protective group of the carboxylic acid group. The yields of both the deprotection steps and coupling reactions using 1,3‐dicyclohexylcarbodiimide or 1‐[3‐(dimethylamino)propyl]‐3‐ethylcarbodiimide hydrochloride were high (70–100%) and the absence of a requirement for conducting the majority of reactions under an inert atmosphere permitted a robust and efficient synthetic strategy to be developed. This allowed monodisperse dimer, tetramer, octamer, 16mer, 32mer, and 64mer materials to be prepared in gram quantities and fully characterized using mass spectrometry and size exclusion chromatography. Evaluation of the thermal and physical properties using thermogravimetric analysis, differential scanning calorimetry, and small angle X‐ray scattering demonstrated a close correlation between the molecular structure of the well‐defined Poly(lactide) oligomers and their physical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5977–5990, 2008  相似文献   

9.
The design of variable-stability coiled-coil heterodimers is described. The electrostatic interface between helices, formed by contact between side chains in heptad e/g positions, is manipulated to produce complexes ranging in stability from ones that are essentially unstructured to those that cannot be thermally denatured. The tuning is accomplished by incremental extension or contraction of parent glutamic acid and lysine side chains by single methylene units, producing peptides that bear either carboxylic acids or amines separated from the peptide backbone by one to four CH2 groups. Detailed examination of all homodimers and electrostatically compatible heterodimers generates interesting combinations, particularly those in which longer-chain acids are incorporated into peptides paired with lysine-bearing ones. The discovery of very stable dimers allows exchange experiments in which one strand of an original heterodimer is specifically replaced by an added one, even in cases where the original complex features the native-like glutamic acid/lysine pairing. The reported results add significantly to the available design templates for coiled-coil construction and enable the future implementation of various triggered-recognition strategies.  相似文献   

10.
The present study aims to understand the dynamical properties of water and OH groups layered on an alumina surface mainly by means of femtosecond IR-pump IR-probe transient absorption spectroscopy. The experimental results obtained demonstrate the existence of several kinds of O-H vibrators on the surface of alumina membranes, distinguishing them by their behavior on the femtosecond time scale and by the anisotropy of their spectral response. In the high-frequency region (>3400 cm-1), the absorption is due to well-packed aluminol groups and to physisorbed water patches on the surface. When pumping at 3200 cm-1, physisorbed water hydrogen-bonded to AlOH2+ groups is observed. The anisotropy measurements demonstrate the existence of an efficient energy-transfer mechanism among the water molecules characterized by a time constant of 400 +/- 100 fs. The persisting anisotropy at long times, especially in the case of AlOH groups and of the structured physisorbed water layer on top of them, proves the anisotropic structuring induced by the surface. The excitation at 3000 cm-1 enables the detection of a photon-induced proton-transfer reaction. The proton back-transfer reaction time constant is 350 +/- 50 fs. From anisotropy measurements, we estimate the proton hopping time to be 900 +/- 100 fs in a locally extended water network lying on the surface.  相似文献   

11.
Amino-calixarene-derivatized graphitic carbon electrode has been used in the simultaneous quantification of lead and cadmium ions at picomolar level. The graphitic carbon has been chemically modified using amino-calixarene as an indicator molecule through microwave irradiation, and it has been characterized by NMR, mass, and Fourier transform infrared spectroscopy (FTIR) techniques. The proposed sensor has shown linearity in the concentration range 10–120 pM with detection limits of 3.3 and 3.5 pM for lead and cadmium, respectively. The proposed sensor has been successfully applied to quantify lead and cadmium levels in battery effluents, alloy materials, and sewage water sample matrices. The results obtained by the proposed sensor are in agreement with the results of the standard protocols.  相似文献   

12.
This paper reports the molecularly imprinted layer-coated silica nanoparticles toward highly selective separation of active diosgenin (DG) from the crude extracts of Dioscorea nipponica Makino (DNM). It has been demonstrated that DG templates were efficiently imprinted into the silica layer by the use of thermally cleavable urethane bonds between DG and 3-isocyanatopropyltriethoxysilane (IPTS), which was synchronously coated onto the surface of silica mother nanoparticles through a seed-directing surface condensation reaction between DG-IPTS and tetraethoxysilicane (TEOS). After removal of templates by simple thermal cleavage reaction, a high density of recognition sites of DG were created in the silica-coating layer. Afterwards, the DG-imprinted silica nanoparticles were evaluated by rebinding experiments and showed a higher selectivity and affinity to DG than commercial silica. When the imprinted particles were used as solid-phase extraction (SPE) sorbents, the recovery yield of DG was up to 90% by one-step extraction from the hydrolysate of DNM, and the purity of DG was larger than 98% by HPLC analysis. These results reported herein provide the possibility for the highly selective separation and purification of active DG from DNM by the molecular imprinting modification at the surface of common silica adsorbents.  相似文献   

13.
Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell‐ and core‐crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell‐ and core‐crosslinked nanoparticles is driven from the ease by which the structures of the shell‐ and core‐forming polymers and crosslinkers can be modified. In addition, postmodification with cell‐recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell‐, core‐, or core–shell‐crosslinked knedel‐like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell‐crosslinked knedel‐like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Hierarchically porous architecture of iron-nitrogen-carbon(Fe-N-C) for oxygen reduction reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary ligand strategy to prepare zeolitic imidazolate frameworks(ZIFs)-derived precursors,wherein the addition of secondary ligand endows precursors with the capabilities to transform into porously interweaved encapsulation-nanotubes structured composites after calcination.The optimal catalyst,i...  相似文献   

15.
This paper reports the preparation of metsulfuron-methyl (MSM) imprinted polymer layer-coated silica nanoparticles toward analysis of trace sulfonylurea herbicides in complicated matrices. To induce the selective occurrence of surface polymerization, the polymerizable double bonds were first grafted at the surface of silica nanoparticles by the silylation. Afterwards, the MSM templates were imprinted into the polymer-coating layer through the interaction with functional monomers. The programmed heating led to the formation of uniform MSM-imprinted polymer layer with controllable thickness, and further improved the reproducibility of rebinding capacity. After removal of templates, recognition sites of MSM were exposed in the polymer layers. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio. There was also evidence indicating that the MSM-imprinted polymer nanoparticles compared with nonimprinted polymer nanoparticles had a higher selectivity and affinity to four structure-like sulfonylurea herbicides. Moreover, using the imprinted particles as dispersive solid-phase extraction (DSPE) materials, the recoveries of four sulfonylurea herbicides determined by high-performance liquid chromatography (HPLC) were 80.2-99.5%, 83.8-102.4%, 77.8-93.3%, and 73.8-110.8% in the spiked soil, rice, soybean, and corn samples, respectively. These results show the possibility that the highly selective separation and enrichment of trace sulfonylurea herbicides from soil and crop samples can be achieved by the molecular imprinting modification at the surface of silica nanoparticles.  相似文献   

16.
电催化水分解是一种可持续的绿色产氢技术,该技术在工业化的大规模应用急需开发高效稳定的非贵金属催化剂,用于提高析氧反应(OER)的反应速率.研究发现,钙钛矿氧化物是优异的OER催化剂,但是对于发生在催化剂-电解质固液界面上的反应机理仍有争论.目前普遍认为,在OER反应过程中,水分子吸附在金属氧化物催化剂表面的金属活性中心...  相似文献   

17.
Adsorption of protons on a heterogeneous solid surface is modeled using the Monte Carlo (MC) simulation method. The surface of an oxide is assumed to consist of adsorption sites with pK assigned according to a quasi-Gaussian distribution. The influence of the electrostatic interactions combined with the energetic heterogeneity of the surface is examined, and the MC results are compared with the predictions of the mean field theory (MFT). It is demonstrated that the heterogeneity affects strongly the shape of the isotherms while it does not change the location of the common intersection point of the isotherms. On the other hand, introduction of repulsive interactions into the system is found to shift the CIP toward lower values of pH. It is also shown that the MFT, in general, describes correctly the behavior of the system. On the contrary the condensation approximation, used to derive relatively simple expressions for the adsorption isotherms, introduces serious errors unless the surface is strongly heterogeneous. Some practical remarks how to eliminate the errors associated both with the MC simulations and with the theory are also presented.  相似文献   

18.
The kinetics of proton binding at the metal oxide/electrolyte interface is studied using the kinetic Monte Carlo method. The influence of system properties (surface site density, interfacial dielectric constant, surface energetic heterogeneity) on the equilibrium and kinetic surface coverage is shown. It is shown that the kinetic properties are much more sensitive to lateral interactions than the equilibrium ones. The assumption of energetic heterogeneity rapidly changes the time scales of the processes as well as the time interval between two subsequent elementary processes. In this paper, the atomistic insight into the kinetics of H(+) ion uptake at the metal oxide/electrolyte interface is presented for the first time.  相似文献   

19.
Molecular dynamics simulations were performed to study the molecular-scale energetic, structural, and dynamic properties of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate (C-S-H). The 9 A tobermorite structure was used as a model for C-S-H, the main building block ("the glue") that hold a cementitious matrix together. Six types of carbon surface structures were investigated: a pristine graphite plane and five graphite planes functionalized with hydroxyl (OH), carboxyl (COOH), carboxylate (COO(-), deprotonated carboxyl), carbonyl (CO), and amine (NH(2)) groups. Results demonstrated the dominant role of electrostatic forces in the interfacial interactions and indicated that the polarity of the functional group can be used as an indicator of affinity to C-S-H. MD simulations revealed that an optimal number of polar oxygen containing groups may exist for efficient graphitic structure/cement interaction and emphasized the mediating role of Ca(2+) counterions in the interfacial interactions.  相似文献   

20.
苏丹红Ⅰ磁性分子印迹聚合物的制备及其分离分析应用   总被引:1,自引:0,他引:1  
以3-(异丁烯酰氧)丙基三甲氧基硅烷修饰的Fe3O4为磁性组分,苏丹红Ⅰ为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,制备了磁性分子印迹聚合物,并用扫描电镜、红外光谱和磁强计对其进行表征。Scatchard分析表明,该磁性印迹聚合物有两类结合位点,最大表观结合量分别为84.59、210.49μmol/g;磁性印迹聚合物对苏丹红Ⅰ/苏丹红Ⅱ、苏丹红Ⅰ/苏丹红Ⅲ的相对选择系数分别为2.47和2.24,表明该印迹聚合物对苏丹红Ⅰ有较高的选择性和吸附性。将该磁性印迹聚合物应用于辣椒粉提取液中苏丹红Ⅰ的分离富集,用磁铁将其与溶液快速分离,经高效液相色谱测得其检出限为0.50μg/g,样品回收率为78%~103%,相对标准偏差为2.8%~5.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号