共查询到20条相似文献,搜索用时 15 毫秒
1.
A bifunctional amido-thiophene namely hexamethylene (bis-3-thiophene acetamide) (HMTA) was synthesized by the reaction of 3-thiophene acetic acid with hexamethylene diamine. Copolymerization in the presence of thiophene was achieved electrochemically in tetrabutylammonium tetrafluoroborate/acetonitrile (TBAFB/AN). Spectroelectrochemical analysis of the resulting copolymer [P(HMTA-co-Th)] reflected electronic transitions at 505 nm, 740 nm and ∼1000 nm, revealing π to π* transition, polaron and bipolaron band formation respectively. Switching ability was evaluated by a kinetic study via measuring the transmittance (%T) at the maximum contrast. Dual type polymer electrochromic devices (ECDs) based on P(HMTA-co-Th) and poly(ethylene dioxythiophene) (PEDOT) have been constructed. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-vis spectroscopy and cyclic voltammetry. These devices exhibit low switching voltages (between 0.0 V and +1.6 V), short switching times with reasonable switching stability under atmospheric conditions. 相似文献
2.
Applications of ionic liquids in electrochemical sensors 总被引:2,自引:0,他引:2
Ionic liquids (ILs) are molten salts with the melting point close to or below room temperature. They are composed of two asymmetrical ions of opposite charges that only loosely fit together (usually bulky organic cations and smaller anions). The good solvating properties, high conductivity, non-volatility, low toxicity, large electrochemical window (i.e. the electrochemical potential range over which the electrolyte is neither reduced nor oxidized on electrodes) and good electrochemical stability, make ILs suitable for many applications. Recently, novel ion selective sensors, gas sensors and biosensors based on ILs have been developed. IL gels were found to have good biocompatibility with enzymes, proteins and even living cells. Besides a brief discussion of the properties of ILs and their general applications based on these properties, this review focuses on the application of ILs in electroanalytical sensors. 相似文献
3.
Ionic liquids are a class of solvents widely studied in the literature for various applications. As a subclass of ionic liquids, redox ionic liquids can endow charge exchange properties (electrons transfer) to these electrolytes for electrochemical energy storage. In this review article, we propose to study this family of ionic liquids and suggest a chronological classification. We introduce five generations of redox ionic liquids with different basic compounds such as polyethylene glycol, ferrocene, different linker lengths, TFSI anion, and biredox ionic liquids. The versatility of the redox ionic liquids synthesis will be discussed as well as the fundamental and applied aspects of their use as electrolytes, which have high charge densities. The impact of the redox ionic liquids on the electrochemical mechanisms will be described. We also present how the redox shuttle effect, detrimental to supercapacitors, can be prevented while it can be used to improve lithium-ion batteries. 相似文献
4.
The redox-active multiligand-binding flavoprotein dodecin binds flavins with high affinity when they are oxidized, whereas flavin reduction induces the dissociation of the holoprotein complex in apododecin and free flavin ligands. Dodecin could be reconstituted at flavin-terminated dsDNA monolayers. The binding and release of apododecin triggered by the redox state of the flavins can be monitored by surface-sensitive techniques such as surface plasmon resonance and quartz crystal microbalance measurements with dissipation monitoring. It has been shown that flavin reduction followed by the release of apododecin can be achieved by mediated electron transfer in the presence of the redox mediator amino ethyl viologen and by chemical flavin reduction, whereas flavin reduction by direct electron transfer via the dsDNA tethers is not possible. The combination of electrochemistry with surface-sensitive techniques such as surface plasmon resonance or quartz crystal microbalance measurements with dissipation monitoring could be highly beneficial to confirm or disprove the mechanism, which has been postulated for the action of primases, which contain a [4Fe4S] cluster and are involved in DNA replication. It has been postulated that these enzymes bind the DNA template when the cluster is in the [4Fe4S]3+ state, whereas they are released when the cluster is reduced via electron transfer through DNA and the protein environment. 相似文献
5.
A new room-temperature ionic liquid (RTIL) consisting of the fluorinated anion bis(trifluoromethyl)-phosphinate((CF3)2PO2−) coupled with the 1-butyl-3-methyl-imidazoliuim (BMIM) cation has been synthesized and characterized by physicochemical and electrochemical means including differential scanning calorimetry (DSC), thermogravimetric analysis, viscosity, conductivity and cyclic voltammetry measurements. Properties are compared with those of the known RTIL consisting of BMIM coupled with the bis(trifluoromethyl)-sulfonylimide (TFSI) anion. 相似文献
6.
Ricardo K. Donato Marcelo V. Migliorini Moisés A. Benvegnú Jairton Dupont Reinaldo S. Gonçalves Henri S. Schrekker 《Journal of Solid State Electrochemistry》2007,11(11):1481-1487
The electrochemical behavior of a platinum electrode in a set of 1-alkyl ether (and 1-alkyl)-3-methylimidazolium room-temperature
ionic liquids (RTILs) 1–3 ([CxOyMim]+[Anion]− or [CxMim]+[Anion]−, where Mim = 3-methylimidazolium; CxOy = 1-alkyl ether; C7O3 = -(CH2)2O(CH2)2O(CH2)2OCH3; C3O1 = -(CH2)2OCH3; Cx = 1-alkyl; C10 = C10H21; C4 = C4H9; and ) was studied by cyclic voltammetry and electrical conductivity. This complementary set of imidazolium RTILs allowed us to
explore the effect of the imidazolium cation and the counter-ion, both of which affected the electrochemical window of these
RTILs. Various electrochemical events with low current values were observed, which diminished the electrochemical windows.
Interestingly, RTILs 2b [1-(2-methoxyethyl)-3-methylimidazolium tetrafluoroborate] and 2d [1-butyl-3-methylimidazolium tetrafluoroborate]
showed quasireversible charge transfer processes. The length of the functional group attached to the imidazolium cation was
shown to be of great influence as larger electrochemical windows, as well as lower electrical conductivities, were obtained
with the longer C7O3 and C10 functional groups. The largest electrochemical window of 2.0 V was achieved with RTIL 2c, 1-decyl-3-methylimidazolium tetrafluoroborate.
Dedicated to the memory of Prof. Francisco Nart. 相似文献
7.
Klaus Deuchert Siegfried Hünig 《Angewandte Chemie (International ed. in English)》1978,17(12):875-886
A general structural principle for organic compounds that have the capacity for two-stage electron transfer is based on the following reaction sequence: In this scheme one or both of the entities X may be replaced by Y?. The radical partners in these systems often have very high thermodynamic stability. The choice of the end groups X and Y, (partial) inclusion of n-systems in rings, alteration of the number of vinylene groups, and aza-substitution make many variations possible. By means of this general structural principle numerous known compounds are brought together and new redox systems are simultaneously set up. The aim of the present review is to demonstrate the broad applicability of this principle, to indicate its significance for science and industry, and to describe some reactions. 相似文献
8.
Finite difference methods of the second order of accuracy are elaborated for numerical calculation of non-steady-state ion transfer, which is caused by diffusion, migration, and convection in the unidimensional electrochemical systems. The methods of decoupling a set of coupled continuity equations of the electrolyte species are proposed, which ensures that the discrete equations are consistent with the initial differential equations and the electroneutrality condition is rigorously met. The methods of approximation of the boundary conditions of the second order temporal and spatial accuracy and the method of decoupling the transfer equations in the boundary nodes are elaborated. The explicit, fully implicit, and semi-implicit finite difference schemes are elaborated. For semi-implicit schemes, two versions of difference equation closure are proposed, which assure the unambiguity of determination of the distribution of electrical potential. Comparison analysis of the accuracy of elaborated finite difference methods of calculation of non-steady-state ion transfer is performed. 相似文献
9.
Charge transfer in the course of the electrochemical ion intercalation is typically understood as the transfer of an alkali metal ion across the intercalating material/electrolyte interface. The activation energy of this step determines the rate capability of intercalation-based energy storage devices, which calls for the investigation of the origin of the charge transfer limitations in various intercalation systems. The major focus of the experimental studies in this area is on the experimental determination of the charge transfer rates under different experimental conditions, while molecular modeling approaches allow to unveil the mechanistic aspects of the intercalation processes. 相似文献
10.
Serena Fedi Piero Zanello Franco Laschi Alessandro Ceriotti Simona El Afefey 《Journal of Solid State Electrochemistry》2009,13(10):1497-1504
The accurate study of the electron transfer activity of the tetraanion [Pt19(CO)22]4− is presented together with that of the dianion [Pt38(CO)44]2−, which was previously studied by spectroelectrochemistry but only partially examined from the electrochemical viewpoint.
The main feature of the two clusters is that they undergo a sequence of close-spaced pairs of reversible one-electron processes,
which are qualitatively reminiscent of those exhibited by the dianion [Pt24(CO)30]2−. In order to focus on such unique aspect of the three structurally characterised platinum clusters, we have investigated
(and reinvestigated) their electrochemical and spectroelectrochemical redox properties, also reporting on the electron paramagnetic
resonance (EPR) spectrum of the monoanion [Pt24(CO)30]−, which represents the first successful study of the paramagnetism of homoleptic platinum–carbonyl clusters. 相似文献
11.
Sheela Berchmans R. G. Nirmal G. Prabaharan A. K. Mishra V. Yegnaraman 《Journal of Solid State Electrochemistry》2006,10(7):439-446
Self-assembled monolayers (SAMs) of thiols with carboxylic acid terminal groups were formed on gold substrates. The electron transfer characteristics of redox species on the above SAM-modified electrodes were studied in acid and neutral media with the help of voltammetry under two different conditions: (1) solution phase electron transfer and (2) bridge mediated electron transfer. Two redox systems, viz., [Fe(CN)6]4-/3− and Ru[(NH3)6]2+/3+ were chosen for the solution phase study. Investigations of bridge mediated electron transfer were carried out by functionalising the SAM with redox moieties and then studying their redox behaviour. For this study, ferrocene carboxylic acid and 1,4-diamino anthraquinone were used and they were linked to carboxylic acid terminated thiols by covalent linkage. The voltammetric results with mercaptoundecanoic acid SAM demonstrate the difference in behaviour between solution phase and bridge mediated electron transfer processes. 相似文献
12.
Ion transfer across the toluene|water, toluene–ionic liquid mixture|water and ionic liquid|water boundary generated by electrochemical redox reaction of tert-butylferrocene (tBuFc) was studied with the glassy carbon (GC) electrode partially covered by the organic liquid deposit and immersed in the aqueous electrolyte solution. The electrooxidation of the redox probe in toluene deposit is followed by ejection of newly formed cation into the aqueous solution. The same reaction in the toluene–ionic liquid deposit promotes anion insertion. This pathway is also found at the electrode modified with ionic liquid. 相似文献
13.
The synthesis of new ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions is described. The physico-chemical properties (conductivity, viscosity, electrochemical and thermal stability) of this new generation of ionic liquids (molten salts) are discussed. FAP-ionic liquids show an excellent hydrolytic stability, low viscosity and high electrochemical and thermal stability that makes them attractive for use in electrochemical devices and as a new media for application in modern technologies and chemical synthesis. 相似文献
14.
Efthimia I. Alevizou Georgia D. Pappa Epaminondas C. Voutsas 《Fluid Phase Equilibria》2009,284(2):99-105
The UNIFAC model is extended to mixtures of ionic liquids consisting of the imidazolium cation and the hexafluorophosphate anion with alkanes, cycloalkanes, alcohols and water. Two new main groups, the imidazolium and the hexafluorophosphate groups, are introduced in UNIFAC. The required group interaction parameters between these groups and the existing UNIFAC main groups, CH2, OH and H2O, are determined by fitting binary liquid–liquid equilibrium and infinite dilution activity coefficient experimental data. The predictive capability of the extended UNIFAC model is examined against experimental data for vapour–liquid equilibrium, liquid–liquid equilibrium and activity coefficients at infinite dilution of binary and ternary systems containing 1-alkyl-3-alkyl′-imidazolium hexafluorophosphate ionic liquids, alkanes, cycloalkanes, alcohols and water. The results indicate that UNIFAC is a reliable model for phase equilibrium predictions in mixtures containing this type of ionic liquids. 相似文献
15.
Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents,which promises widespread applications in industry and other areas. However,the ionic liq-uids with surface activity are rarely reported. In this work,a series of novel ionic liquids was synthe-sized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized,which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility. 相似文献
16.
A theoretical research on the properties of Ru(II)-based complexes 1–5 with polypyridyl ligands damaging DNA with the help of light has been carried out. Firstly, the redox potential, electrons-transfer (ET) activation energy, and intra-molecular reorganization energy were computed using DFT (density functional theory), and the results can be used to explain the DNA-photocleavage efficiencies of complexes. Secondly, the effect of ligands on the reduction potentials of complexes in the excited state was elucidated, and the reason of complexes cleaving DNA by the oxidation-reduction reaction and the produced singlet oxygen was explained. Finally, the frontier orbitals of complexes were computed, which was used to qualitatively explain the reason of complexes with high reduction potentials in the excited state. 相似文献
17.
Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure 总被引:2,自引:0,他引:2
A new method for the pretreatment of screen-printed carbon electrodes (SPCEs) by two successive steps was proposed. In step one, fresh SPCEs were soaked into NaOH with high concentration (e.g. 3 M) for tens to hundreds of minutes, and the resulted electrodes were called as SPCE-I. In step two, SPCE-I were pre-anodized in low concentration of NaOH, which were designated as SPCE-II. The pretreated electrodes showed remarkable enhancement in heterogeneous electron transfer rate constant (k0) increased from 1.6 × 10−4 cm s−1 at the fresh SPCE to 1.1 × 10−2 cm s−1 at SPCE-I for Fe(CN)63−/4− couple. The peak to peak separation (ΔEp) in cyclic voltammetry was reduced from ca. 480 to 84 mV, indicating that the electrochemical reversibility was greatly promoted, possibly due to the removing of polymers/oil binder from the electrode surfaces. The electroactive area (Aea) of the electrode was increased by a factor of 17 after pretreatment in step one. Further analysis by the electrochemical impedance method showed that the electron transfer resistance (Rct) decreased from ca. 2100 to 1.4 Ω. These pretreated electrodes, especially SPCE-II, exhibited excellent electrocatalytic behavior for the redox of dopamine (DA). Interference from ascorbic acid (AA) in the detection of DA at SPCE-II could be effectively eliminated due to the anodic peak separation (190 mV) between DA and AA, which resulted from the functionalization of the electrode surface in the pretreatment of step two. Under optimum conditions, current responses to DA were linearly changed in two concentration intervals, one was from 3.0 × 10−7 to 9.8 × 10−6 M, and the other was from 9.8 × 10−6 to 3.3 × 10−4 M. The detection limit for DA was down to 1.0 × 10−7 M. 相似文献
18.
The electrochemistry of poly(3,4-ethylenedioxythiophene) (PEDOT) was studied in two ionic liquids with bulky organic anions, i.e., 1-butyl-3-methylimidazolium (BMIM) diethylene glycol monomethyl ether sulfate (MDEGSO4) and BMIM octyl sulfate (OctSO4). BMIM-MDEGSO4 is a liquid, while BMIM-OctSO4 is in solid form at room temperature. Electrosynthesis of PEDOT in BMIM-MDEGSO4 with an EDOT concentration of 0.1 M and in BMIM-MDEGSO4/EDOT 1/1 (w/w) solution resulted in no polymer at all or a very limited amount of polymer on the electrode surface, as determined by cyclic voltammetry in 0.1 M KCl(aq) solution. In contrast, electrosynthesis of PEDOT in BMIM-OctSO4/EDOT 1/1 (w/w) resulted in a high yield of electroactive material on the electrode surface. Furthermore, electrosynthesis of PEDOT in ionic liquid–water solution (Cionic liquid=1.5 M) containing 0.1 M EDOT was also found to give a relatively high yield of electroactive material on the electrode surface, both for 1.5 M BMIM-MDEGSO4(aq) and 1.5 M BMIM-OctSO4(aq). The PEDOT electrodes showed an anionic potentiometric response in 10–5–10–1 M KCl(aq) solution, indicating a predominant anion transfer at the polymer–solution interface despite the relatively bulky anions (MDEGSO4– or OctSO4–) incorporated as counterions in PEDOT during electropolymerization. On the basis of electrochemical impedance spectroscopy, the charge (ion) transport properties of the polymer film were strongly influenced by the water content of the ionic liquid (Cionic liquid=0.05–2.0 M).Dedicated to Zbigniew Galus on the occasion of his 70th birthday 相似文献
19.
20.
Herbert Plenio Clemens Aberle 《Angewandte Chemie (International ed. in English)》1998,37(10):1397-1399
The availability of sodium ions can be regulated indirectly (through electron transfer reactions) and reversibly through the addition and removal of zinc ions. In this cyclic process (depicted on the right) a redox-responsive ferrocene substituted with two dipicolylamino ligands (Fcdpa) coordinates two Zn2+ ions, while a redox-switchable ferrocene cryptand (Fccrypt) only forms stable complexes with Na+ when the ligand is in its reduced form. L is a strong ligand such as 1,4,8,11-tetraazacyclotetradecane. 相似文献