首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach to solar energy conversion is presented on the basis of photoinduced heterogeneous electron transfer at polarised interfaces between two immiscible electrolyte solutions. Preliminary studies at the water|1,2-dichloroethane interface sensitised by water-soluble zinc porphyrin heterodimers exhibited conversion efficiencies around 0.1%, corresponding to a photocurrent to absorbed photon flux ratio close to unity. The conversion efficiency is increased in the presence of redox couples acting as supersensitiser in the aqueous phase. The characteristic power relationship for these interfaces is also presented, and the possibility of solar cells where no solid electrodes are directly involved in the photogeneration and transport of charge carriers is envisaged.  相似文献   

2.
A solvent-free ionic liquid electrolyte based on the SeCN-/(SeCN)3- redox couple has been employed for high-efficiency dye-sensitized nanocrystalline solar cells. For the first time an alternative redox couple has been identified to rival and even exceed the performance of the iodide/triiodide couple even at full sunlight. Unprecedented 7.5-8.3% power conversion efficiencies under AM 1.5 sunlight have been achieved for photovoltaic devices with solvent-free ionic liquid electrolytes.  相似文献   

3.
Molecular systems that follow the functional principles of photosynthesis have attracted increasing attention as a method for the direct production of solar fuels. This could give a major carbon-neutral energy contribution to our future society. An outstanding challenge in this research is to couple the light-induced charge separation (which generates a single electron-hole pair) to the multielectron processes of water oxidation and fuel generation. New design considerations are needed to allow for several cycles of photon absorption and charge separation of a single artificial photosystem. Here we demonstrate a molecular system with a regenerative photosensitizer that shows two successive events of light-induced charge separation, leading to high-yield accumulation of redox equivalents on single components without sacrificial agents.  相似文献   

4.
A microfluidic device with integrated electrodes for the electrochemically-modulated extraction of ions across immiscible aqueous–organic liquid–liquid interfaces is presented. Using a Y-shaped microfluidic channel with in situ electrodes and co-flowing aqueous and organic immiscible electrolyte solutions, the manipulation of the applied interfacial potential enabled the extraction of ions from the aqueous phase into the organic phase. Data for the extraction of tetraethylammonium cations from aqueous electrolyte into 1,2-dichloroethane electrolyte are presented. The device demonstrates the benefits of combination of microfluidics and liquid–liquid electrochemistry.  相似文献   

5.
The optimization of interfacial charge transfer is crucial to the design of dye-sensitized solar cells. In this paper we address the dynamics of the charge separation and recombination in liquid-electrolyte and solid-state cells employing a series of amphiphilic ruthenium dyes with varying hydrocarbon chain lengths, acting as an insulating barrier for electron-hole recombination. Dynamics of electron injection, monitored by time-resolved emission spectroscopy, and of charge recombination and regeneration, monitored by transient optical absorption spectroscopy, are correlated with device performance. We find that increasing dye alkyl chain length results in slower charge recombination dynamics to both the dye cation and the redox electrolyte or solid-state hole conductor (spiro-OMeTAD). These slower recombination dynamics are however paralleled by reduced rates for both electron injection into the TiO2 electrode and dye regeneration by the I-/I3- redox couple or spiro-OMeTAD. Kinetic competition between electron recombination with dye cations and dye ground state regeneration by the iodide electrolyte is found to be a key factor for liquid electrolyte cells, with optimum device performance being obtained when the dye regeneration is just fast enough to compete with electron-hole recombination. These results are discussed in terms of the minimization of kinetic redundancy in solid-state and liquid-electrolyte dye-sensitized photovoltaic devices.  相似文献   

6.
The discovery that cycloalkanes can form thermomorphic systems with typical polar organic solvents has led to the development of less-polar electrolyte solutions. Their mixing and separation can be regulated reversibly at a moderate temperature range. The phase switching temperature can be controlled by changing the solvent compositions. While biphasic conditions are maintained below the phase switching temperature, conductive monophasic conditions as less-polar electrolyte solutions are obtained above the phase switching temperature. After the electrochemical transformations, biphasic conditions are reconstructed below the phase switching temperature, facilitating the separation of cycloalkane where hydrophobic products or designed hydrophobic platforms are selectively partitioned. Several polar organic solvents, including acetonitrile, methanol, and pyridine, can be used in this system according to the requirement of the reactions.  相似文献   

7.
Ion transfer at liquid|liquid junctions is one of the most fundamental processes in nature. It occurs coupled to simultaneous electron transfer at the line junction (or triple phase boundary) formed by the two liquids in contact to an electrode surface. The triple phase boundary can be assembled from a redox active microdroplet deposit of a water-immiscible liquid on a suitable electrode surface immersed into aqueous electrolyte. Ion transfer voltammetry measurements at this type of electrode allow both thermodynamic and kinetic parameters for coupled ion and electron transfer processes to be obtained. This overview summarises some recent advances in understanding and application of triple phase boundary redox processes at organic liquid|aqueous electrolyte|working electrode junctions. The design of novel types of electrodes is considered based on (i) extended triple phase boundaries, (ii) porous membrane processes, (iii) hydrodynamic effects, and (iv) generator-collector triple phase boundary systems. Novel facilitated ion transfer processes and photo-electrochemical processes at triple phase boundary electrodes are proposed. Potential future applications of triple phase boundary redox systems in electrosynthesis, sensing, and light energy harvesting are indicated.  相似文献   

8.
We present Differential Scanning Calorimetry (DSC) results on Hydroxyl Ammonium Nitrate (HAN) solutions and Triethanol Ammonium Nitrate (TEAN) solutions with varying concentrations. These results are used to generate phase diagrams of these solutions. The results of the melting points of these liquids are compared with the theoretical calculations of the depression of melting points. The melting temperatures of the HAN solutions at some specified concentration range are predicted rather well using the two electrolyte assumption. The phase diagram of the TEAN solutions explains an instability with respect to phase separation of this liquid.  相似文献   

9.
The large‐scale, cost‐effective storage of electrical energy obtained from the growing deployment of wind and solar power is critically needed for the integration into the grid of these renewable energy sources. Rechargeable batteries having a redox‐flow cathode represent a viable solution for either a Li‐ion or a Na‐ion battery provided a suitable low‐cost redox molecule soluble in an aprotic electrolyte can be identified that is stable for repeated cycling and does not cross the separator membrane to the anode. Here we demonstrate an environmentally friendly, low‐cost ferrocene/ferrocenium molecular redox couple that shows about 95 % energy efficiency and about 90 % capacity retention after 250 full charge/discharge cycles.  相似文献   

10.
A new type of electrolyte with a sulfide/polysulfide redox couple and I(-) was prepared as a solvent-free ionic liquid for application in dye-sensitized solar cells, reaching efficiencies of 5.2-6.4% under AM 1.5G, 100 mW cm(-2) light illumination, and 6.6% efficiency was obtained under 0.1 sun irradiation.  相似文献   

11.
Polymer brush-grafted particles (i.e., hairy particles) capable of undergoing direct, especially reversible, phase transfer from one liquid phase to another immiscible liquid phase in response to environmental changes have received growing interest due to their great potential in a wide variety of applications. This article is intended to review recent exciting advances in stimuli-triggered phase transfer of hairy particles in liquid-liquid biphasic systems. We start with a discussion of the mechanism of particle transfer across a liquid-liquid interface and progress to the synthesis of polymer brushes grafted on particles and the transfer of hairy particles between two immiscible liquid phases induced by various external stimuli, including temperature, pH, ionic strength, light, and solvents. The applications of thermally triggered phase transfer of hairy particles in catalysis (thermoregulated phase transfer catalysis) are discussed, followed by a summary and our perspective on future development. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1600–1619  相似文献   

12.
氧化还原液流电池(简称液流电池)是一种正在积极研制开发的新型大容量电化学储能装置,其活性物质是流动的电解质溶液,最显著的特点是规模化蓄电. 在广泛利用可再生能源的呼声高涨形势下,可以预见液流电池将迎来一个快速发展的时期. 氧化还原活性物质是液流电池能源转化的载体,也是液流电池中最核心的部分.传统液流电池利用无机材料作为活性物质,然而,无机材料成本高、毒性、资源有限、形成枝晶和电化学活性低等缺点限制了液流电池的大规模应用. 有机活性物质由于具有成本低、“绿色”、资源丰富、分子能级易于调节和电化学反应快等优点,引起了国内外的广泛关注. 近年来,有机液流电池的性能得到快速提升,一系列有机活性物质相继被开发出来. 本文梳理了近年来有机液流电池的研究进展. 首先简要介绍了液流电池的应用领域和技术特点;然后根据电解液种类的不同,详细讨论了有机活性物质在水系和非水系液流电池的应用情况;最后展望了有机液流电池走向实际应用所面临的挑战和潜在研究方向.  相似文献   

13.
Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell, different from the typical electrochemical systems working in liquid phase, was developed. There are several advantages to work in gas phase, e.g. no need to recover the products from a liquid phase and no problems of CO2 solubility, etc. Operating under these conditions and using electrodes based on metal nanoparticles supported over carbon nanotube (CNT) type materials, long C-chain products (in particular isopropanol under optimized conditions, but also hydrocarbons up to C8–C9) were obtained from the reduction of CO2. Pt-CNT are more stable and give in some cases a higher productivity, but Fe-CNT, particular using N-doped carbon nanotubes, give excellent properties and are preferable to noble-metal-based electrocatalysts for the lower cost. The control of the localization of metal particles at the inner or outer surface of CNT is an importact factor for the product distribution. The nature of the nanocarbon substrate also plays a relevant role in enhancing the productivity and tuning the selectivity towards long C-chain products. The electrodes for the electrocatalytic conversion of CO2 are part of a photoelectrocatalytic (PEC) solar cell concept, aimed to develop knowledge for the new generation artificial leaf-type solar cells which can use sunlight and water to convert CO2 to fuels and chemicals. The CO2 reduction to liquid fuels by solar energy is a good attempt to introduce renewables into the existing energy and chemical infrastructures, having a higher energy density and easier transport/storage than other competing solutions (i.e. H2).  相似文献   

14.
We describe a porphyrin dye-sensitised solar cell utilising a solid state electrolyte containing the I(-)/I(3)(-) redox couple, which yields a performance of 5.3% under moderate light intensity and 4.8% at full sun.  相似文献   

15.
Interest in the application of semiconductors toward the photocatalytic generation of solar fuels, including hydrogen from water-splitting and hydrocarbons from the reduction of carbon dioxide, remains strong due to concerns over the continued emission of greenhouse gases as well as other environmental impacts from the use of fossil fuels. While the efficiency and durability of such systems will depend heavily on the types of the semiconductors, co-catalysts, and mediators employed, the dimensionality of the semiconductors employed can also have a significant impact. Recognizing the broad nature of this field and the many recent advances in it, this review focuses on the emerging approaches from 0-dimensional (0D) to 3-dimensional (3D) semiconductor photocatalysts towards efficient solar fuels generation. We place particular emphasis on systems that are “semi-artificial”, that is, hybrid systems that integrate naturally occurring enzymes or whole cells with semiconductor components that harvest light energy. The semiconductors in these systems must have suitable interfacial properties for immobilization of enzymes to be effective photocatalysts. These requirements are particularly sensitive to surface structures and morphology, making the semiconductor dimensionality a critical factor. In addition to providing an overview of advances towards designing 3D architecture in semi-artificial photosynthetic field, we also present recent advances in fabrication strategies for 3D inorganic photocatalysts.  相似文献   

16.
The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.  相似文献   

17.
Photovoltage and photocurrents below theoretical limits in dye-sensitized photoelectrochemical solar energy conversion systems are usually attributed to electron loss processes such as dye–electron and electrolyte–electron recombination reactions within the porous photoanode. Whether recombination is a major loss mechanism is examined here, using a multiscale reaction–diffusion computational model to evaluate system characteristics. The dye-sensitized solar cell with an I/I3 redox couple is chosen as a simple, representative model system because of the extensive information available for it. Two photoanode architectures with dye excitation frequencies spanning 1–25 s−1 are examined, assuming two distinct recombination mechanisms. The simulation results show that although electrolyte–electron reactions are very efficient, they do not significantly impact photoanode performance within the system as defined. This is because the solution-phase electrolyte chemistry plays a key role in mitigating electron losses through coupled reactions that produce I within the photoanode pores, thereby cycling the electrolyte species without requiring that all electrolyte reduction reactions take place at the more distantly located cathode. This is a functionally adaptive response of the chemistry that may be partly responsible for the great success of this redox couple for dye-sensitized solar cells. The simulation results provide predictions that can be tested experimentally.

Interfacial electrolyte reactions in the pores of a photoanode consume electrons. The losses are offset by compensating solution-phase reactions that generate I locally, and promote efficient dye cycling and photocurrent generation.  相似文献   

18.
Two organic dyes XS51 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar cells (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photophysical, electro-chemical characteristics and cell performance are investigated. XS51 with four hexyloxyl groups on triarylamine performs better steric hindrance and an improvement of photovoltage. XS52 provides higher short-circuit photocurrent density due to the strong electron-donating capability of indoline unit. The results from the redox electrolyte on cell performances indicate that the synthesized dyes are more suitable for tris(1,10-phenanthroline)cobalt(II/III) redox couple than I?/I3? redox couple in assembling DSCs. Application of XS52 in the cobalt electrolyte yields a DSC with an overall power conversion efficiency of 6.58% under AM 1.5 (100 mW/cm2) irradiation.  相似文献   

19.
Cells can form membraneless organelles by liquid–liquid phase separation. As these organelles are highly dynamic, it is crucial to understand the kinetics of these phase transitions. Here, we use droplet‐based microfluidics to mix reagents by chaotic advection and observe nucleation, growth, and coarsening in volumes comparable to cells (pL) and on timescales of seconds. We apply this platform to analyze the dynamics of synthetic organelles formed by the DEAD‐box ATPase Dhh1 and RNA, which are associated with the formation of processing bodies in yeast. We show that the timescale of phase separation decreases linearly as the volume of the compartment increases. Moreover, the synthetic organelles coarsen into one single droplet via gravity‐induced coalescence, which can be arrested by introducing a hydrogel matrix that mimics the cytoskeleton. This approach is an attractive platform to investigate the dynamics of compartmentalization in artificial cells.  相似文献   

20.
Optimizing dyes for dye-sensitized solar cells   总被引:3,自引:0,他引:3  
Dye-sensitized solar cells (DSSCs) have emerged as an important cheap photovoltaic technology. Charge separation is initiated at the dye, bound at the interface of an inorganic semiconductor and a hole-transport material. Careful design of the dye can minimize loss mechanisms and improve light harvesting. Mass application of DSSCs is currently limited by manufacturing complexity and long-term stability associated with the liquid redox electrolyte used in the most-efficient cells. In this Minireview, dye design is discussed in the context of novel alternatives to the standard liquid electrolyte. Rapid progress is being made in improving the efficiencies of such solid and quasi-solid DSSCs which promises cheap, efficient, and robust photovoltaic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号