首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We introduce three new constraint qualifications for nonlinear second order cone programming problems that we call constant rank constraint qualification, relaxed constant rank constraint qualification and constant rank of the subspace component condition. Our development is inspired by the corresponding constraint qualifications for nonlinear programming problems. We provide proofs and examples that show the relations of the three new constraint qualifications with other known constraint qualifications. In particular, the new constraint qualifications neither imply nor are implied by Robinson’s constraint qualification, but they are stronger than Abadie’s constraint qualification. First order necessary optimality conditions are shown to hold under the three new constraint qualifications, whereas the second order necessary conditions hold for two of them, the constant rank constraint qualification and the relaxed constant rank constraint qualification.

  相似文献   

2.
It is known that the minimal cone for the constraint system of a conic linear programming problem is a key component in obtaining strong duality without any constraint qualification. For problems in either primal or dual form, the minimal cone can be written down explicitly in terms of the problem data. However, due to possible lack of closure, explicit expressions for the dual cone of the minimal cone cannot be obtained in general. In the particular case of semidefinite programming, an explicit expression for the dual cone of the minimal cone allows for a dual program of polynomial size that satisfies strong duality. In this paper we develop a recursive procedure to obtain the minimal cone and its dual cone. In particular, for conic problems with so-called nice cones, we obtain explicit expressions for the cones involved in the dual recursive procedure. As an example of this approach, the well-known duals that satisfy strong duality for semidefinite programming problems are obtained. The relation between this approach and a facial reduction algorithm is also discussed.  相似文献   

3.
Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker p...  相似文献   

4.
In this paper, optimality conditions are presented and analyzed for the cardinality-constrained cone programming arising from finance, statistical regression, signal processing, etc. By introducing a restricted form of (strict) Robinson constraint qualification, the first-order optimality conditions for the cardinality-constrained cone programming are established based upon the properties of the normal cone. After characterizing further the second-order tangent set to the cardinality-constrained system, the second-order optimality conditions are also presented under some mild conditions. These proposed optimality conditions, to some extent, enrich the optimization theory for noncontinuous and nonconvex programming problems.  相似文献   

5.
We characterize the local upper Lipschitz property of the stationary point mapping and the Karush–Kuhn–Tucker (KKT) mapping for a nonlinear second-order cone programming problem using the graphical derivative criterion. We demonstrate that the second-order sufficient condition and the strict constraint qualification are sufficient for the local upper Lipschitz property of the stationary point mapping and are both sufficient and necessary for the local upper Lipschitz property of the KKT mapping.  相似文献   

6.
We first show that the closedness of the characteristic cone of the constraint system of a parametric robust linear optimization problem is a necessary and sufficient condition for each robust linear program with the finite optimal value to admit exact semidefinite linear programming relaxations. We then provide the weakest regularity condition that guarantees exact second-order cone programming relaxations for parametric robust linear programs.  相似文献   

7.
We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are all weaker than the MPEC linear independence constraint qualification, and derive several second-order optimality conditions for MPEC under the new MPEC constraint qualifications. Finally, we discuss the isolatedness of local minimizers for MPEC under very weak conditions.  相似文献   

8.
本文主要研究在某些较弱条件下求解带线性互补约束的数学规划问题(MPLCC)正则方法的收敛性.若衡约束规划线性独立约束规范条件(MPEC-LICQ)在由正则方法产生的点列的聚点处成立,且迭代点列满足二阶必要条件,同时,若比在文[7]中渐近弱非退化条件Ⅰ更弱的渐近弱非退化条件Ⅱ在聚点处也成立,那么所有这些聚点都是B-稳定点.此外,在弱MPEC-LICQ,二阶必要条件及渐近弱退化条件Ⅱ下,我们仍能证明通过正则方法所得的聚点都是B-稳定点.  相似文献   

9.
We consider a finite state-action discounted constrained Markov decision process with uncertain running costs and known transition probabilities. We propose equivalent linear programming, second-order cone programming and semidefinite programming problems for the robust constrained Markov decision processes when the uncertain running cost vectors belong to polytopic, ellipsoidal, and semidefinite cone uncertainty sets, respectively. As an application, we study a variant of a machine replacement problem and perform numerical experiments on randomly generated instances of various sizes.  相似文献   

10.
This paper analyzes the rate of local convergence of the Log-Sigmoid nonlinear Lagrange method for nonconvex nonlinear second-order cone programming. Under the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second-order sufficient condition, we show that the sequence of iteration points generated by the proposed method locally converges to a local solution when the penalty parameter is less than a threshold and the error bound of solution is proportional to the penalty parameter. Finally, we report numerical results to show the efficiency of the method.  相似文献   

11.
The standard nearest correlation matrix can be efficiently computed by exploiting a recent development of Newton’s method (Qi and Sun in SIAM J. Matrix Anal. Appl. 28:360–385, 2006). Two key mathematical properties, that ensure the efficiency of the method, are the strong semismoothness of the projection operator onto the positive semidefinite cone and constraint nondegeneracy at every feasible point. In the case where a simple upper bound is enforced in the nearest correlation matrix in order to improve its condition number, it is shown, among other things, that constraint nondegeneracy does not always hold, meaning Newton’s method may lose its quadratic convergence. Despite this, the numerical results show that Newton’s method is still extremely efficient even for large scale problems. Through regularization, the developed method is applied to semidefinite programming problems with simple bounds.  相似文献   

12.
 In this paper, we describe how to reformulate a problem that has second-order cone and/or semidefiniteness constraints in order to solve it using a general-purpose interior-point algorithm for nonlinear programming. The resulting problems are smooth and convex, and numerical results from the DIMACS Implementation Challenge problems and SDPLib are provided. Received: March 10, 2001 / Accepted: January 18, 2002 Published online: September 27, 2002 Key Words. semidefinite programming – second-order cone programming – interior-point methods – nonlinear programming Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

13.
We analyze the rate of local convergence of the augmented Lagrangian method in nonlinear semidefinite optimization. The presence of the positive semidefinite cone constraint requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and variational analysis on the projection operator in the symmetric matrix space. Without requiring strict complementarity, we prove that, under the constraint nondegeneracy condition and the strong second order sufficient condition, the rate of convergence is linear and the ratio constant is proportional to 1/c, where c is the penalty parameter that exceeds a threshold . The research of Defeng Sun is partly supported by the Academic Research Fund from the National University of Singapore. The research of Jie Sun and Liwei Zhang is partly supported by Singapore–MIT Alliance and by Grants RP314000-042/057-112 of the National University of Singapore. The research of Liwei Zhang is also supported by the National Natural Science Foundation of China under project grant no. 10471015 and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.  相似文献   

14.
Let G=(V,E) be a graph. In matrix completion theory, it is known that the following two conditions are equivalent: (i) G is a chordal graph; (ii) Every G-partial positive semidefinite matrix has a positive semidefinite matrix completion. In this paper, we relate these two conditions to constraint nondegeneracy condition in semidefinite programming and prove that they are each equivalent to (iii) For any G-partial positive definite matrix that has a positive semidefinite completion, constraint nondegeneracy is satisfied at each of its positive semidefinite matrix completions.  相似文献   

15.
This paper analyses the properties of the projection mapping over a set defined by a constraint function whose image is possibly a nonpolyhedral convex set. Under some nondegeneracy assumptions, we prove the (strong) semismoothness of the projection mapping. In particular, we derive the strong semismoothness of the projection mapping when the nonpolyhedral convex set under consideration is taken to be the second-order cone or the semidefinite cone. We also derive the semismoothness of the solution to the Moreau–Yosida regularization of the maximum eigenvalue function.  相似文献   

16.
The relationship between the mathematical program with linear complementarity constraints (MPLCC) and its inequality relaxation is studied. Based on this relationship, a new sequential quadratic programming (SQP) method is presented for solving the MPLCC. A certain SQP technique is introduced to deal with the possible infeasibility of quadratic programming subproblems. Global convergence results are derived without assuming the linear independence constraint qualification for MPEC, the nondegeneracy condition, and any feasibility condition of the quadratic programming subproblems. Preliminary numerical results are reported. Research is partially supported by Singapore-MIT Alliance and School of Business, National University of Singapore.  相似文献   

17.
The paper analyzes the rate of local convergence of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Under the constraint nondegeneracy condition and the strong second order sufficient condition, we demonstrate that the sequence of iterate points generated by the augmented Lagrangian method locally converges to a local minimizer at a linear rate, whose ratio constant is proportional to 1/τ with penalty parameter τ not less than a threshold . Importantly and interestingly enough, the analysis does not require the strict complementarity condition. Supported by the National Natural Science Foundation of China under Project 10771026 and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.  相似文献   

18.
In this paper, we consider approximate solutions (\(\epsilon \)-solutions) for a convex semidefinite programming problem in the face of data uncertainty. Using robust optimization approach (worst-case approach), we prove an approximate optimality theorem and approximate duality theorems for \(\epsilon \)-solutions in robust convex semidefinite programming problem under the robust characteristic cone constraint qualification. Moreover, an example is given to illustrate the obtained results.  相似文献   

19.
We present a successive linearization method with a trust region-type globalization for the solution of nonlinear semidefinite programs. At each iteration, the method solves a quadratic semidefinite program, which can be converted to a linear semidefinite program with a second order cone constraint. A subproblem of this kind can be solved quite efficiently by using some recent software for semidefinite and second-order cone programs. The method is shown to be globally convergent under certain assumptions. Numerical results on some nonlinear semidefinite programs including optimization problems with bilinear matrix inequalities are reported to illustrate the behaviour of the proposed method.The research of the fourth author was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science. The research of the second author was supported by the DFG (Deutsche Forschungsgemeinschaft).  相似文献   

20.
In this paper, we study quasi approximate solutions for a convex semidefinite programming problem in the face of data uncertainty. Using the robust optimization approach (worst-case approach), approximate optimality conditions and approximate duality theorems for quasi approximate solutions in robust convex semidefinite programming problems are explored under the robust characteristic cone constraint qualification. Moreover, some examples are given to illustrate the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号