首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of achieving bioorthogonal intracellular catalysis, a library of platinum(II) complexes was synthesized. Their non-toxicity to living cells was demonstrated and their catalytic activity was evaluated on a cyclization reaction leading to a highly fluorescent coumarin. None of the platinum complexes showed any catalytic activity for coumarin synthesis. Still, we demonstrated that the silver salt AgSbF6 commonly used to ‘activate’ metal catalysts by removing a chloride is a very efficient catalyst for the studied intramolecular cyclization reaction.  相似文献   

2.
Electron transfer plays a major role in chemical reactions and processes, and this is particularly true of catalysis by nanomaterials. The advent of metal nanoparticle (NP) catalysts, recently including atomically precise nanoclusters (NCs) as parts of nanocatalyst devices has brought increased control of the relationship between NP and NC structures and their catalytic functions. Consequently, the molecular definition of these new nanocatalysts has allowed a better understanding and management of various kinds of electron transfer involved in the catalytic processes. This Minireview brings a chemist‘s view of several major aspects of electron-transfer functions concerning NPs and NCs in catalytic processes. Particular focus concerns the role of NPs and NCs as electron reservoirs and light-induced antenna in catalytic processes from H2 generation to more complex reactions and sustainable energy production.  相似文献   

3.
《Chemistry & biology》1997,4(8):579-593
Background: RNA and DNA are polymers that lack the diversity of chemical functionalities that make proteins so suited to biological catalysis. All naturally occurring ribozymes (RNA catalysts) that catalyze the formation, transfer and hydrolysis of phosphodiesters require metal-ion cofactors for their catalytic activity. We wished to investigate whether, and to what extent, DNA molecules could catalyze the cleavage (by either hydrolysis or transesterification) of a ribonucleotide phosphodiester in the absence of divalent or higher-valent metal ions or, indeed, any other cofactors.Results: We performed in vitro selection and amplification experiments on a library of random-sequence DNA that incorporated a single ribonucleotide, a suitable site for cleavage. Following 12 cycles of selection and amplification, a ‘first generation’ of DNA enzymes (DNAzymes) cleaved their internal ribonucleotide phosphodiesters at rates ∼ 107-fold faster than the spontaneous rate of cleavage of the dinucleotide ApA in the absence of divalent cations. Re-selection from a partially randomized DNA pool yielded ‘second generation’ DNAzymes that self-cleaved at rates of ∼ 0.01 min−1 (a 108-fold rate enhancement over the cleavage rate of ApA). The properties of these selected catalysts were different in key respects from those of metal-utilizing ribozymes and DNAzymes. The catalyzed cleavage took place in the presence of different chelators and ribonuclease inhibitors. Trace-metal analysis of the reaction buffer (containing very high purity reagents) by inductively coupled plasma-optical emission spectrophotometry indicated that divalent or higher-valent metal ions do not mediate catalysis by the DNAzymes.Conclusions: Our results indicate that, although ribozymes are sometimes regarded generically to be metalloenzymes, the nucleic acid components of ribozymes may play a substantial role in the overall catalysis. Given that metal cofactors increase the rate of catalysis by ribozymes only ∼ 102−103-fold above that of the DNAzyme described in this paper, it is conceivable that substrate positioning, transition-state stabilization or general acid/base catalysis by the nucleic acid components of ribozymes and DNAzymes may contribute significantly to their overall catalytic performance.  相似文献   

4.
Porosity in nanoparticles and their ensembles can profoundly alter a system's electrochemical behaviour by both changing the number and identity of the available catalytic sites, and through influencing the mass transport in the vicinity of the electrochemical interface. This review focuses first on recent advancements in characterising porosity and heterogeneity at the nanoscale and second on developments in electrochemical simulation which provide insight into how a porous architecture can lead to apparent ‘catalytic’ effects by virtue of altering the masstransport in the vicinity of the electrode.  相似文献   

5.
分子氧氧化醇的研究进展   总被引:1,自引:0,他引:1  
刘俊华  王芳  徐贤伦 《化学进展》2007,19(11):1718-1726
鉴于分子氧具有经济、环保、易得的优势,本文从均相催化、多相催化以及新材料的角度阐述了近年来液态醇选择氧化到醛酮的进展。着重介绍了过渡金属作为活性组分构成的催化体系,较详细的对新催化材料的研究做了一下归类,并对其在醇的氧化反应中的应用做了介绍,认为传统催化领域的研究仍然具有魅力,同时新材料的开发与运用在未来的具有诱人的前景。  相似文献   

6.
The activation of dioxygen for selective oxidation of organic molecules is a major catalytic challenge. Inspired by the activity of nitrogen‐doped carbons in electrocatalytic oxygen reduction, we combined such a carbon with metal‐oxide catalysts to yield cooperative catalysts. These simple materials boost the catalytic oxidation of several alcohols, using molecular oxygen at atmospheric pressure and low temperature (80 °C). Cobalt and copper oxide demonstrate the highest activities. The high activity and selectivity of these catalysts arises from the cooperative action of their components, as proven by various control experiments and spectroscopic techniques. We propose that the reaction should not be viewed as occurring at an ‘active site’, but rather at an ‘active doughnut’–the volume surrounding the base of a carbon‐supported metal‐oxide particle.  相似文献   

7.
Recently, it has been established that the localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles can be put toward the acceleration and control of molecular transformations. This field, named plasmonic catalysis, has emerged as a new frontier in nanocatalysis. For metals such as silver (Ag), gold (Au), and copper (Cu), the LSPR excitation can take place in the visible and near-infrared ranges, opening possibilities for the conversion of solar to chemical energy and new/alternative reaction pathways not accessible via conventional, thermally activated catalytic processes. As both catalytic and optical properties can be tuned by controlling several physical and chemical parameters at the nanoscale, design-controlled nanomaterials open the door to unlock the potential of plasmonic catalysis both in terms of fundamental understanding and optimization of performances. In this context, after introducing the fundamentals of plasmonic catalysis, we provide an overview on the current understanding of this field enabled by the utilization of designed-controlled nanostructures based on plasmonic and catalytic metals as model systems. We start by discussing trends in plasmonic catalytic performances and their correlation with nanoparticle size, shape, composition, and structure. Then, we highlight how multimetallic compositions and morphologies containing both catalytic and plasmonic components enables one to extend the use of plasmonic catalysis to metals that are important in catalysis but do not support LSPR excitation in the visible range. Finally, we focus on key challenges and perspectives that are critically important to assist us in designing future energy-efficient plasmonic-catalytic materials.  相似文献   

8.
Water confined on metal oxide surface plays significant roles in heterogeneous catalysis. Heteropolyacid, a 1.2 nm-metal oxide cluster with well-defined structure, is applied as a model to understand the dynamics of water on its surface. The surface water strongly associates with heteropolyacid cluster and form the so-called ‘pseudoliquid phase’ where catalytic reactions are conducted. Broadband dielectric spectroscopy and differential scanning calorimetry have been applied to probe the dynamics of water in this pseudoliquid phase. A supercooling phase transition of water below its normal melting temperature and a dipolar glassy relaxation behaviour due to the hindered dynamics of water have been observed. The rich dynamic behavior on the surface of such well-defined metal clusters provide new perspectives to understand the properties of surface water and their relation to catalytic performance of heteropolyacid.  相似文献   

9.
Xueling Li  Jianshan Ye 《Electroanalysis》2008,20(17):1917-1924
Carbon nanotubes (CNTs) are widely used in electrochemical studies. It is reported that CNTs with different source and dispersed in different agents [1] yield significant difference of electrochemical reactivity. Here we report on the electrochemical performance of CNTs paste electrodes (CNTPEs) prepared by multiwalled carbon nanotubes (MWNTs) with different diameters, lengths and functional groups. The resulting electrodes exhibit remarkable different electrochemical reactivity towards redox molecules such as NADH and K3[Fe(CN)6]. It is found that CNTPEs prepared by MWNTs with 20–30 nm diameter show highest catalysis to NADH oxidation, while CNTPEs prepared by MWNTs with carboxylate groups have best electron‐transfer rate (The peak‐peak separation (ΔEp) is +0.108 V for MWNTs with carboxylate groups, +0.155 V for normal MWNTs, and +0.174 V for short MWNTs) but weak catalysis towards oxidation of NADH owing to the hydrophilicity of carboxylate groups. The electrochemical reactivity depends on the lengths of CNTs to some extent. The ‘long’ CNTs perform better in our study (The oxidation signals of NADH appear below +0.39 V for ‘long’ CNTs and above +0.46 V for the ‘short’ one totally). Readers may get some directions from this article while choose CNTs for electrochemical study.  相似文献   

10.
《Chemistry & biology》1998,5(10):539-553
Background: One of the most significant questions in understanding the origin of life concerns the order of appearance of DNA, RNA and protein during early biological evolution. If an ‘RNA world’ was a precursor to extant life, RNA must be able not only to catalyze RNA replication but also to direct peptide synthesis. Iterative Iterative RNA selection previously identified catalytic RNAs (ribozymes) that form amide bonds between RNA and an amino acid or between two amino acids.Results: We characterized peptidyl-transferase reactions catalyzed by two different families of ribozymes that use substrates that mimic A site and P site tRNAs. The family II ribozyme secondary structure was modeled using chemical modification, enzymatic digestion and mutational analysis. Two regions resemble the peptidyl-transferase region of 23S ribosomal RNA in sequence and structural context; these regions are important for peptide-bond formation. A shortened form of this ribozyme was engineered to catalyze intermolecular (‘trans’) peptide-bond formation, with the two amino-acid substrates binding through an attached AMP or oligonucleotide moiety.Conclusions: An in vitro-selected ribozyme can catalyze the same type of peptide-bond formation as a ribosome; the ribozyme resembles the ribosome because a very specific RNA structure is required for substrate binding and catalysis, and both amino acids are attached to nucleotides. It is intriguing that, although there are many different possible peptidyl-transferase ribozymes, the sequence and secondary structure of one is strikingly similar to the ‘helical wheel’ portion of 23S rRNA implicated in ribosomal peptidyl-transferase activity.  相似文献   

11.
The molecular aspect of the Raman vibrational selection rules allows for the molecular structural and reactivity determinations of metal oxide catalytic active sites in all types of oxide catalyst systems (supported metal oxides, zeolites, layered hydroxides, polyoxometalates (POMs), bulk pure metal oxides, bulk mixed oxides and mixed oxide solid solutions). The molecular structural and reactivity determinations of metal oxide catalytic active sites are greatly facilitated by the use of isotopically labeled molecules. The ability of Raman spectroscopy to (1) operate in all phases (liquid, solid, gas and their mixtures), (2) operate over a very wide temperature (-273 to >1000 °C) and pressure (UHV to ?100 atm) range, and (3) provide molecular level information about metal oxides makes Raman spectroscopy the most informative characterization technique for understanding the molecular structure and surface chemistry of the catalytic active sites present in metal oxide heterogeneous catalysts. The recent use of hyphenated Raman spectroscopy instrumentation (e.g., Raman-IR, Raman-UV-vis, Raman-EPR) and the operando Raman spectroscopy methodology (e.g., Raman-MS and Raman-GC) is allowing for the establishment of direct structure-activity/selectivity relationships that will have a significant impact on catalysis science in this decade. Consequently, this critical review will show the growth in the use of Raman spectroscopy in heterogeneous catalysis research, for metal oxides as well as metals, is poised to continue to exponentially grow in the coming years (173 references).  相似文献   

12.
While both organocatalysis and gold catalysis have their roots deeply entrenched in the landscape of modern organic chemistry, an exciting trend in the complementary merging of organocatalysis and especially Au(I) catalysis has emerged in the last four years. This niche area has been developing rapidly and this minireview serves to pin-point the fundamental concepts guiding reaction design in these binary catalytic systems. Moreover, the proven synthetic utility of organo/Au(I) multicatalytic systems in accessing molecular frameworks, previously a challenge to single catalytic systems, has resulted in this new concept permeating numerous areas of organocatalysis, such as primary/secondary amine, Br?nsted acid, hydrogen-bonding as well as N-heterocyclic carbene (NHC) catalysis. The first detailed account of these recent developments is systematically presented.  相似文献   

13.
Recent topics in the molecular catalysis of heteropoly compounds both in solid and solution states are described, regarding (a) structural characteristics, (b) acid and redox properties, and (c) catalytic properties.  相似文献   

14.
Dicobalt or heterobimetallic cofacial bisporphyrins are up till now amongst the very few molecular electrocatalysts able to promote the direct reduction of dioxygen to water via a four-electron process in acidic medium. Numerous studies have been devoted to elucidate the key steps of this catalytic reaction and an important result has revealed an unexpected high dioxygen affinity for a mixed valence Co(II)/Co(III) cofacial porphyrin, the key intermediate complex being a μ-superoxo derivative. At the same time, the great importance assumed by ‘Pacman’ porphyrins and the recent developments in corrole chemistry have provided the stimulation to synthesise porphyrin–corrole dyads which might also transport and/or activate dioxygen. In the present paper, we report the stepwise synthesis and characterisation of a cofacial porphyrin–corrole bearing an anthracenyl bridge, (PCA)H5 where PCA is the pentaanion of 1-(13,17-diethyl-2,3,7,8,12,18-hexamethylporphyrin–5-yl)-8-(7,8,12,13-tetramethyl-2,3,17,18-tetraphenylcorrol-10-yl) anthracene. The synthesis and characterisation of the μ-superoxo Co(III)/Co(III) complex 〚(PCA)Co2Im2〛(μ-O2) is also described.  相似文献   

15.
The l-2-haloacid dehalogenases (EC 3.8.1.2) specifically cleave carbon-halogen bonds in the L-isomers of halogenated organic acids. These enzymes have potential applications for the bioremediation and synthesis of various industrial products. One such enzyme is DehL, the l-2-haloacid dehalogenase from Rhizobium sp. RC1, which converts the L-isomers of 2-halocarboxylic acids into the corresponding D-hydroxycarboxylic acids. However, its catalytic mechanism has not been delineated, and to enhance its efficiency and utility for environmental and industrial applications, knowledge of its catalytic mechanism, which includes identification of its catalytic residues, is required. Using ab initio fragment molecular orbital calculations, molecular mechanics Poisson-Boltzmann surface area calculations, and classical molecular dynamic simulation of a three-dimensional model of DehL-l-2-chloropropionic acid complex, we predicted the catalytic residues of DehL and propose its catalytic mechanism. We found that when Asp13, Thr17, Met48, Arg51, and His184 were individually replaced with an alanine in silico, a significant decrease in the free energy of binding for the DehL-l-2-chloropropionic acid model complex was seen, indicating the involvement of these residues in catalysis and/or structural integrity of the active site. Furthermore, strong inter-fragment interaction energies calculated for Asp13 and L-2-chloropropionic acid, and for a water molecule and His184, and maintenance of the distances between atoms in the aforementioned pairs during the molecular dynamics run suggest that Asp13 acts as the nucleophile and His184 activates the water involved in DehL catalysis. The results of this study should be important for the rational design of a DehL mutant with improved catalytic efficiency.  相似文献   

16.
The nonribosomal peptide synthetases (NRPSs) are one of the most promising resources for the production of new bioactive molecules. The mechanism of NRPS catalysis is based around sequential catalytic domains: these are organized into modules, where each module selects, modifies, and incorporates an amino acid into the growing peptide. The intermediates formed during NRPS catalysis are delivered between enzyme centers by peptidyl carrier protein (PCP) domains, which makes PCP interactions and movements crucial to NRPS mechanism. PCP movement has been linked to the domain alternation cycle of adenylation (A) domains, and recent complete NRPS module structures provide support for this hypothesis. However, it appears as though the A domain alternation alone is insufficient to account for the complete NRPS catalytic cycle and that the loaded state of the PCP must also play a role in choreographing catalysis in these complex and fascinating molecular machines.  相似文献   

17.
The miniaturization of in situ spectroscopic tools has been recognized as a forefront instrumental development for the characterization of heterogeneous catalysts. With the multitude of micro-spectroscopic methods available fundamental insight into the structure-function relationships of catalytic processes can be obtained. Among these techniques vibrational spectroscopy is one of the most versatile methods and capable to shed insight into the molecular structure of reaction intermediates and products, the chemical state of catalyst materials during reaction as well as the nature of interactions between reactants/intermediates/products and the catalyst surface. In this tutorial review we discuss the recent developments in the field of infrared (IR) and Raman micro-spectroscopy and illustrate their potential. Showcase examples include (1) chemical imaging of spatial heterogeneities during catalyst preparation, (2) high-throughput catalyst screening, (3) transport and adsorption phenomena within catalytic solids and (4) reactivity studies of porous oxides, such as zeolites. Finally, new in situ spectroscopy tools based on vibrational spectroscopy and their potential in the catalysis domain are discussed.  相似文献   

18.
The influence of the ageing conditions on the properties of organic-inorganic hybrid solids obtained by sol–gel route using NaOH catalysis has been studied. The cases of 1,4-bis(trimethoxysilyl)benzene 1 (‘rigid’ precursor) and 1,4-bis(trimethoxysilylethyl)benzene 2 (‘more flexible’ one) have been investigated. The 29Si CP MAS NMR spectra of the silsesquioxanes clearly reveal that Si–O–Si bond cleavage and redistribution reactions occur when the ageing time is increased or is performed at higher temperatures. This particular behaviour observed only with NaOH is of importance in the choice of the catalyst.  相似文献   

19.
Bibliometric and thematic analyses were performed for more than 11 thousand reviews and monographs in catalysis registered in the Chemical Abstracts Plus database on the SciFinder platform from April, 2011, to December, 2012, with the aim to elucidate the hot spots of this area. The identified spots include photo- and electrocatalysis; stereoselective (bio-) catalysis; catalytic functionalization of organic compounds; catalysis by nanostructured, in particular, graphene-based materials; catalytic production of biofuel; and application of catalysis in novel energy technologies.  相似文献   

20.
Porous materials have attracted great attention in energy and environment applications, such as metal organic frameworks (MOFs), metal aerogels, carbon aerogels, porous metal oxides. These materials could be also hybridized with other materials into functional composites with superior properties. The high specific area of porous materials offer them the advantage as hosts to conduct catalytic and electrochemical reactions. On one hand, catalytic reactions include photocatalytic, photoelectrocatalytic and electrocatalytic reactions over some gases. On the other hand, they can be used as electrodes in various batteries, such as alkaline metal ion batteries and electrochemical capacitors. So far, both catalysis and batteries are extremely attractive topics. There are also many obstacles to overcome in the exploration of these porous materials. The research related to porous materials for energy and environment applications is at extremely active stage, and this has motivated us to contribute with a roadmap on ‘porous materials for energy and environment applications’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号