首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If were not by their low electrochemical stability, aqueous electrolytes would be the preferred alternative to be used in electrochemical energy storage devices. Their abundance and nontoxicity are key factors for such application, especially in large scale. The development of highly concentrated aqueous electrolytes, so-called water-in-salt electrolytes, has expanded the electrochemical window of aqueous electrolyte up to 3.0 V (whereas salt-in-water electrolytes normally shows up to 1.6 V), showing that water can be an alternative after all. Many devices, ranging from metal-ion batteries to electrochemical capacitors, have been reported recently, making use of such wider electrochemical stability and enhancing devices energy density. Different salts have also been proposed not only to gain in costs but also to improve physicochemical properties.  相似文献   

2.
The electrochemical double layer between Cu(111) electrodes and aqueous electrolytes (F and SO2−4 at various pH values) was studied by means of linear scan voltammetry and ac impedance measurements. It is found that electrochemisorption of oxygen species proceeds on the Cu(111) surface in the potential regions more negative than the electrodissolution potential of copper. The adsorption-desorption kinetics are analysed; the anodic and cathodic symmetry coefficients are found to be equal (α = β = 0.3), and the standard rate constant is k° = 4 × 10−10cm s−1.  相似文献   

3.
The surface of phenol-based activated carbon (AC) was fluorinated at room temperature with different F2:N2 gas mixtures for use as an electrode material in an electric double-layer capacitor (EDLC). The effect of surface fluorination on EDLC electrochemical performance was investigated. The specific capacitance of the fluorinated AC-based EDLC was measured in a 1 M H2SO4 electrolyte, in which it was observed that the specific capacitances increased from 375 and 145 F g−1 to 491 and 212 F g−1 with the scan rates of 2 and 50 mV s−1, respectively, in comparison to those of an unfluorinated AC-based EDLC when the fluorination process was optimized via 0.2 bar partial F2 gas pressure. This enhancement in capacitance can be attributed to the synergistic effect of increased polarization on the AC surface, specific surface area, and micro and mesopore volumes, all of which were induced by the fluorination process. The observed increase in polarization was derived from a highly electronegative fluorine functional group that emerged due to the fluorination process. The increased surface area and pore volume of the AC was derived from the physical function of the fluorine functional group.  相似文献   

4.
A novel type of composite electrode based on hydrous manganese oxide and a single-walled carbon nanotube has been prepared and used in electrochemical capacitors. Cyclic voltammetry, galvanostatic charging/discharging tests and electrochemical impedance measurements were applied to investigate the performance of the composite electrodes with different ratios of hydrous manganese oxide and single-walled carbon nanotube. For comparison, the performance of pure hydrous manganese oxide and pure carbon nanotubes was also studied. In this way, the composite electrode with a 6:4 ratio of hydrous manganese oxide to carbon nanotube was found to be the most promising active material for an electrochemical capacitor, which shows both good capacitance and power characteristics.  相似文献   

5.
Lithium ion conducting polymer electrolytes based on polyacrylonitrile (PAN) and lithium bis(oxalato)borate (LiBOB) have been prepared and characterized. The polymer electrolytes having PAN:LiBOB weight ratios of 90:10, 80:20, 70:30, 60:40 and 50:50 were prepared using dimethylformamide as solvent. The electrolyte having the composition 50 wt.% PAN–50 wt.% LiBOB shows the highest room temperature conductivity of 2.55 × 10?5 S cm?1. This sample demonstrated a lithium ion transference number of 0.25 and a breakdown voltage of 1.6 V. The highest conducting electrolyte was then sandwiched between two symmetrical carbon electrodes to fabricate an electrical double layer capacitor (EDLC). The EDLCs were characterized using impedance measurement, cyclic voltammetry (CV) and galvanostatic charge–discharge tests. The capacitance obtained from impedance measurement is about 35 F g?1 at frequency 10 mHz. From CV, the capacitance is calculated to be 24 F g?1 at 10 mV s?1 scan rate. The discharge capacitance of the EDLCs is determined in the range from 22 to 10 F g?1 at corresponding discharge currents from 0.2 to 1.5 mA, respectively. This also corresponds to a specific energy from 3.01 to 1.47 W h kg?1 and a specific power from 380 to 474 W kg?1, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The performance of a newly designed, polyaniline activated carbon, hybrid electrochemical capacitor was evaluated. The polyaniline was prepared by the chemical oxidation/polymerization process. The capacitor was assembled by using polyaniline as a positive electrode and an activated carbon as a negative electrode respectively. From a cyclic voltammograms test, a specific capacitance of 420 F/g was obtained for polyaniline electrode. The cycle life of the cell is proved to be more than 1000 times by the Galvanostatic charge and discharge test. Values for the specific energy and real specific power of 15.5 Wh/kg and 2.8 W/g, respectively, are demonstrated for a cell voltage between 0.0 and 1.4 V. The max specific power for the hybrid capacitor amounts to 20.4 W/g.  相似文献   

7.
电化学电容器电极材料超细MnO2的制备及表征   总被引:10,自引:0,他引:10  
高性能的电化学电容器具有极其重要和广阔的应用前景(1)。以RuO2等贵重金属氧化物为电极材料的电化学电容器已应用于多个领域(2),但昂贵的价格限制了它们更加广泛的应用。有些廉价金属氧化物也具有一定的氧化还原准电容,如Co3O4、NiO和MnO2等(1,3 6)。二氧化锰价格低廉,资源丰富,电化学性能好,其作为电化学电容器的活性材料具有更大的应用前景和价值。本文采用K2S2O8氧化MnSO4·H2O制得超细MnO2,并通过XRD、TEM和SEM测试对其进行表征,并研究了其在0 5mol/LNa2SO4水溶液中的循环伏安性能、恒流充放性能以及电容稳定性能。1…  相似文献   

8.
Electrical double layer capacitors based on ideally polarizable nanoporous carbon electrodes in propylene carbonate with the addition of different 1 M Me3EtNBF4, Me2Et2NBF4, MeEt3NBF4, Et4NBF4, Et3PrNBF4 and Et3BuNBF4 electrolytes have been tested by cyclic voltammetry, chronoamperometry and electrochemical impedance methods. The limits of ideal polarizability, low-frequency limiting capacitance and series resistance, time constant, Ragone plots (energy density vs. power density dependencies) and other characteristics have been discussed. The influence of the electrolyte molar mass on the electrochemical characteristics of the nanoporous carbon electrode cells has been established. The applicability limits of the Srinivasan and Weidner model have been tested.  相似文献   

9.
The energy density of non-aqueous carbon-based electrochemical capacitors(cEC)is mainly determined by the specific capacitance and operational voltage range.In this study,we propose to construct an unbalanced structure to make full use of stable voltage range for improving energy density.The stable voltage range is firstly carefully explored using cyclic voltammetry.Then an unbalanced carbon-based electrochemical capacitor(ucEC)is constructed with an optimized positive electrode to negative electrode weight ratio and voltage range.Its electrochemical performance is comprehensively investigated,including energy density,power density as well as cycle life.The ucEC is capable to deliver an improved energy density up to 64.9 Wh/kg(1.4 times as high as a general cEC)without sacrificing the power density and cycle life.The electrode properties after cycling are also analyzed,illustrating the change of electrode potential caused by unbalanced structure.The proposed structure demonstrates a great potential for improving the energy density at little cost of electrode design and cell configuration.  相似文献   

10.
Carbon electrodes are a key factor for electric double layer capacitors (EDLCs). Carbon gels have high porosity with a controllable pore structure by changing synthesis conditions and modifying preparation processing to improve the electrochemical performance of EDLCs. This review summarizes the preparation of carbon gels and their derivatives, the criteria to synthesize high surface area in each process, the development by some carbon forms, and EDLC applications. Porous carbons are also prepared as model materials by concentrating on how pore structure increases electrochemical capacitance, such as electronic and ion resistance, the tortuosity of pore channel, suitable micropore and mesopore sizes, and mesopore size distribution. This review emphasizes the significance of pore structures as the key factor to allow for the design of suitable pore structures that are suitable as the carbon electrode for EDLCs.  相似文献   

11.
Nanostructured MnO2/carbon nanotubes composite electrode material was prepared using the liquid-phase deposition reaction starting with potassium permanganate (KMnO4) and manganese acetate (Mn(Ac)2·4H2O) as the reactants and carbon nanotubes (CNTs) as the substrates. The structure and morphology of the material was characterized by X-ray diffraction, infrared spectroscopy, and transmission electron microscope techniques. The electrochemical properties of the nano-MnO2/CNTs composite electrode in 1 M LiAc and 1 M MgSO4 solutions and in 1 M RAc (R = Li, Na, and K)–1 M MgSO4 mixed solutions, respectively, were studied. Experimental results demonstrated that the specific capacitance and rate discharge ability of the nano-MnO2/CNTs composite electrode in 1 M LiAc–1 M MgSO4 mixed solution is superior to that in 1 M LiAc or 1 M MgSO4 solution. For the 1 M RAc (R = Li, Na, and K)–1 M MgSO4 mixed electrolytes, the specific capacitance of the composite electrode was found to be in the following order: LiAc > NaAc > KAc.  相似文献   

12.
Lithium electrode passivation is studied in different organic electrolytes, namely, 1 M LiClO4 in 1,3-dioxolane, 1 M LiN(CF3SO2)2 in 1,3-dioxolane, 1 M LiPF6 in an ethylene carbonate-diethyl carbonate mixture, 1 M LiPF6 in an ethylene carbonate-dimethyl carbonate mixture, using the electrochemical noise method. The dynamics of passive film formation on the lithium surface in the mentioned electrolytes that differ in their corrosivity towards lithium is followed.  相似文献   

13.
In this review, we shortly summarize the basic theoretical milestones achieved in the mean-field theory of room temperature ionic liquids on charged electrodes since the publication of Kornyshev's seminal article in 2007. We pay special attention to the behavior of the differential capacitance profile and the microscopic parameters of ions that can have a substantial influence on it. Among them are parameters of short-range specific interactions, ionic diameters, static polarizabilities, and permanent dipole moments. We also discuss the recent ‘nonlocal’ mean-field theories that can describe the overscreening behavior of the local ionic concentrations, as well as the crossover from overscreening to crowding.  相似文献   

14.
A series of porous carbon materials with wide range of specific surface areas and different heteroatom contents had been prepared using polyaniline as carbon precursor and KOH as an activating agent. Effect of surface area and heteroatom of porous carbon materials on specific capacitance was investigated thoroughly in two typical aqueous KOH and organic 1-butyl-3- methylimidazolium tetrafluoroborate/acetonitirle electrolytes. The different trends of capacitance performance were observed in these two electrolytes. Electrochemical analyses suggested that the presence of faradaic interactions on heteroatom-enriched carbon materials in organic environment is less significant than that observed in aqueous electrolytes. Thus, in aqueous electrolyte, a balance between surface area and heteroatom content of activated porous carbon would be found to develop a supercapacitor with high energy density. In organic electrolyte, the capacitance performance of porous carbon is strongly dependent on the surface area. The results may be useful for the design of porous carbon-based supercapacitor with the desired capacitive performance in aqueous and organic electrolytes.  相似文献   

15.
苏岳锋  吴锋 《化学通报》2004,67(8):616-620
在C/KOH/Ni(OH)2型非对称电化学电容体系中,Ni(OH)2电极需具有快速发生电化学反应的能力与活性炭负极匹配。本文通过增加微集流体的掺杂比例.对活性物质进行球磨处理、固相掺杂碳纳米管等方法对正极进行改性研究。实验发现,增加正极微集流体的掺杂比例.可明显改善非对称电容大电流条件下的容量和循环性能;对正极活性物质进行球磨处理,有利于电极活性物质的转变.加快非对称电容的活化速度;在正极固相掺杂一定比例的碳纳米管可提高非对称电容的充放电效率和容量性质。  相似文献   

16.
以MoO3为基体,分别用超声分散法与碳纳米管(CNTs),化学原位聚合法与聚吡咯(PPy)复合,制备了MoO3/CNTs,MoO3/PPy和MoO3/CNTs/PPy纳米复合材料。利用XRD、SEM、TEM对复合材料进行物性表征,在1 mol·dm-3的HCl溶液中对MoO3,MoO3/CNTs,MoO3/PPy和MoO3/CNTs/PPy四个样品进行电化学测试。结果表明,复合材料的比容量均高于MoO3,其中,由于MoO3/PPy特殊的一维核壳结构使其具有较高的比表面积,相比较其他复合材料而言,有更好的电化学活性。该材料的最大比电容为450.8F·g-1。  相似文献   

17.
Attachment of nickel nanoparticles on multiwalled carbon nanotubes (MWCNTs) was conducted to explore the influence of Ni loading on the electrochemical capacitance of MWCNT electrodes. A chemical impregnation leaded to homogeneously disperse Ni particles onto the surface of MWCNTs, and the Ni particles were found to be an average size of 30–50 nm. The capacitive behavior of the MWCNT electrodes was investigated in 6 M KOH, by using cyclic voltammetry (CV), charge–discharge cycling, and ac electrochemical impedance spectroscopy. CV measurements showed that the Faradaic current was found to increase with the Ni coverage, indicating that the presence of Ni would enhance the pseudocapacitance through the redox process. Equivalent circuit analysis indicated that both of electrical connection and charge transfer resistances accounted for the major proportion of the overall resistance and were found to decrease with the amount of nickel. A linearity relationship between the total capacitance and the Ni population reflected that each Ni particle exhibits an identical electrochemical activity in enhancing the electrochemical capacitance. The overall electrochemical capacitance (including double layer capacitance and pseudocapacitance) of Ni-MWCNT electrode can reach a maximum of 210 F/g over 500 cycles.  相似文献   

18.
碳糊电极在有机物电化学分析中的应用   总被引:8,自引:1,他引:8  
碳糊电极作为一种制备简单、易于更新和重现性好的新型电极,在有机物分析中应用非常广泛。本文就从电极材料的选择、修饰剂的选用和有机物分类等几个方面对近几年碳糊电极在有机物电化学分析上的进展进行评述。引用文献54篇。  相似文献   

19.
Self-organized TiO2 nanotubes (NTs) can be formed by electrochemical anodization. Anodization is generally performed in aqueous or organic electrolytes containing halogen ions, such as Cl and F. However, these electrolytes lead to less ordered structures or carbon remnants, thus suppressing the electrical properties and limiting the applications. To overcome these limitations, new anodization approaches were performed in carbon-free electrolyte-based electrolyte. In this review, we summarizes the short history of TiO2 NTs, general mechanisms of growing NTs, properties, and applications of classic TiO2 NTs. Then, a new-generation of anodization approach conducted in molten orhto-phosphoric acid is elucidated based on anodization parameters, concluding the optimized condition to form highly ordered TiO2 NT arrays. Finally, the review addresses further modifications such as heat-treatment, noble metal deposition, thermal dewetting, and double anodization to enhance the optical and electrical properties for use in various applications.  相似文献   

20.
The effect of polymer–salt addition in the activated carbon electrode for electric double-layer capacitor (EDLC) has been investigated. A series of composite thin film electrode consisting of activated carbon, carbon black, polytetrafluoroethylene and polymer–salt complex (polyethyleneoxide–LiClO4) with an appropriate weight ratio were prepared and examined their performance for EDLCs using 1 mol L−1 LiClO4 in ethylene carbonate:diethylcarbonate electrolyte solution. The electrochemical capacitance performances of these electrodes with different compositions were characterized by cyclic voltammetry, galvanostatic charge–discharge cycling, and AC impedance measurements. By comparison, the best results were obtained with a composite electrode rich in polymer–salt additive (132 F g−1 at 100 mA g−1 of galvanostatic experiment). In general, the polymer–salt-containing electrode had shown improved performance over activated carbon electrodes without polymer–salt at high current density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号