首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dominating set for a graph G = (V, E) is a subset of vertices VV such that for all v ε VV′ there exists some u ε V′ for which {v, u} ε E. The domination number of G is the size of its smallest dominating set(s). For a given graph G with minimum size dominating set D, let m1 (G, D) denote the number of edges that have neither endpoint in D, and let m2 (G, D) denote the number of edges that have at least one endpoint in D. We characterize the possible values that the pair (m1 (G, D), m2 (G, D)) can attain for connected graphs having a given domination number.  相似文献   

2.
An irredundant set of vertices VV in a graph G=(V,E) has the property that for every vertex uV′, N[V′−{u}] is a proper subset of N[V′]. We investigate the parameterized complexity of determining whether a graph has an irredundant set of size k, where k is the parameter. The interest of this problem is that while most “k-element vertex set” problems are NP-complete, several are known to be fixed-parameter tractable, and others are hard for various levels of the parameterized complexity hierarchy. Complexity classification of vertex set problems in this framework has proved to be both more interesting and more difficult. We prove that the k-element irredundant set problem is complete for W[1], and thus has the same parameterized complexity as the problem of determining whether a graph has a k-clique. We also show that the “parametric dual” problem of determining whether a graph has an irredundant set of size nk is fixed-parameter tractable.  相似文献   

3.
The following results are obtained. (i) Let p, d, and k be fixed positive integers, and let G be a graph whose vertex set can be partitioned into parts V1, V2,…, Va such that for each i at most d vertices in V1Vi have neighbors in Vi+1 and r(Kk, Vi) p | V(G) |, where Vi denotes the subgraph of G induced by Vi. Then there exists a number c depending only on p, d, and k such that r(Kk, G)c | V(G) |. (ii) Let d be a positive integer and let G be a graph in which there is an independent set I V(G) such that each component of GI has at most d vertices and at most two neighbors in I. Then r(G,G)c | V(G) |, where c is a number depending only on d. As a special case, r(G, G) 6 | V(G) | for a graph G in which all vertices of degree at least three are independent. The constant 6 cannot be replaced by one less than 4.  相似文献   

4.
The countability index C(S) of a semigroup S is the least positive integer n, if such an integer exists, with the property that every countable subset of S is contained in a subsemigroup with n generators. If no such integer exists. C(S) is defined to be infinite. Let V be a vector space over a field F and denote by End V the endomorphism semigroup of V. In the two main results, it is determined precisely when C(End V)=2 and when C(End V)=x SpecificallyC(End V)=2 if and only if V is infinite dimensional or dim V=1 and F is finite and C(End V)=x if and only if F is infinite and dim V is an integer N≥1.  相似文献   

5.
Given a graph G = (V,E) and a finite set L(v) at each vertex v ε V, the List Coloring problem asks whether there exists a function f:VvεVL(V) such that (i) f(vL(v) for each vεV and (ii) f(u) ≠f(v) whenever u, vεV and uvεE. One of our results states that this decision problem remains NP-complete even if all of the followingconditions are met: (1) each set L(v) has at most three elements, (2) each “color” xεvεVL(v) occurs in at most three sets L(v), (3) each vertex vεV has degree at most three, and (4) G is a planar graph. On the other hand, strengthening any of the assumptions (1)–(3) yields a polynomially solvable problem. The connection between List Coloring and Boolean Satisfiability is discussed, too.  相似文献   

6.
A directed graph D with vertex set V is called cyclically h-partite (h2) provided one can partition V=V0+V1++Vh−1 so that if (u, υ) is an arc of D then uεVi, and υεVi+1 (notation mod h). In this communication we obtain a characterization of cyclically h-partite strongly connected digraphs. As a consequence we obtain a sufficient condition for a digraph to have a h-kernel.  相似文献   

7.
Let V be a finite dimensional vector space over the field Fand φ (x)∈F[x].LetxV V be a linear operator. Let Sφbe the set consisting of the vectors whose minimal polynomial φ(x)together with the zero vector We give necessary and sufficieni condition for S φ to be a subspace.  相似文献   

8.
Let UV denote the tensor product of two finite dimensional vector spaces U and V over an infinite field. Let k be a positive integer such that k≤dim U and k≤ dim V Let Dk denote the set of all non-zero elements of UV of rank less than k. In this paper we study linear transformations T on UV such that (TDk)⊆Dk.  相似文献   

9.
Let V be a finite dimensional vector space of dimension at least 2 over an infinite field F. We show that the set of all decomposable elements in the rth symmetric product space over i:V(r≥ 2) is an algebraic set if F is algebraically closed and only if every polynomial of degree at most r splits completcly over F.  相似文献   

10.
Let U and V be modules of finite composition length over a principal ideal domain D. Then, denoting the composition length of the D-module Horn (U,V) by 〈U,V〉, it is shown that 〈U,V2≤〈U,U〉〈V,V〉 and that equality holds iff U and V are isomorphic to direct sums of copies of some common module. This gives an isomorphism criterion for U and V based entirely on composition lengths. As a special case, the theorem gives a strong version of a criterion of M. A. Gauger and C. 1. Byrnes for the similarity of two matrices.  相似文献   

11.
This paper records two results about graded Hopf algebras that do not appear to be stated explicitly in the literature. Let B be a graded set, graded by the positive integers. Let V be the graded vector space with basis B over a field K of characteristic zero and V'=KV, where K is in grading zero. Let L ne the free graded Lie algebra on B over K and let T be the free graded tensor algebra on B. The first result is the "graded Witt formula" giving the dimension of the subspace of L in each grading. The second result is the observation that any graded coassociative, co-commutative comultiplication Δ:V'V'V', with co-unit the projection V1K. extends to a graded Hopf algebra structure on T that is in fact isomorphic to the natural graded Hopf algebra structure on T. In the ungraded case the statement analogous to the second result is false.  相似文献   

12.
We consider the following model Hr(n, p) of random r-uniform hypergraphs. The vertex set consists of two disjoint subsets V of size | V | = n and U of size | U | = (r − 1)n. Each r-subset of V × (r−1U) is chosen to be an edge of H ε Hr(n, p) with probability p = p(n), all choices being independent. It is shown that for every 0 < < 1 if P = (C ln n)/nr−1 with C = C() sufficiently large, then almost surely every subset V1 V of size | V1 | = (1 − )n is matchable, that is, there exists a matching M in H such that every vertex of V1 is contained in some edge of M.  相似文献   

13.
Let D = (V1, V2; A) be a directed bipartite graph with |V1| = |V2| = n 2. Suppose that dD(x) + dD(y) 3n + 1 for all x ε V1 and y ε V2. Then D contains two vertex-disjoint directed cycles of lengths 2n1 and 2n2, respectively, for any positive integer partition n = n1 + n2. Moreover, the condition is sharp for even n and nearly sharp for odd n.  相似文献   

14.
Let L be the set of all additive and hereditary properties of graphs. For P1, P2 L we define the reducible property R = P1 P2 as follows: G P1P2 if there is a bipartition (V1, V2) of V(G) such that V1 P1 and V2 P2. For a property P L, a reducible property R is called a minimal reducible bound for P if P R and for each reducible property R′, RRP R′. It is proved that the class of all outerplanar graphs has exactly two minimal reducible bounds in L. Some related problems for planar graphs are discussed.  相似文献   

15.
Let T be a linear operator on the vector space V ofn×n matrices over a field F. We discuss two types of problems in this chapter. First, what can we say about T if we assume that T maps a given algebraic set such as the special linear group into itself? Second, let p(x) be a polynomial function (such as det) on V into F. What can we say about T if Tpreserves p(x), i.e. p(T(X)) = p(X) for all X in V?  相似文献   

16.
We consider a generalized version of the Steiner problem in graphs, motivated by the wire routing phase in physical VLSI design: given a connected, undirected distance graph with required classes of vertices and Steiner vertices, find a shortest connected subgraph containing at least one vertex of each required class. We show that this problem is NP-hard, even if there are no Steiner vertices and the graph is a tree. Moreover, the same complexity result holds if the input class Steiner graph additionally is embedded in a unit grid, if each vertex has degree at most three, and each class consists of no more than three vertices. For similar restricted versions, we prove MAX SNP-hardness and we show that there exists no polynomial-time approximation algorithm with a constant bound on the relative error, unless P = NP. We propose two efficient heuristics computing different approximate solutions in time OE¦+¦V¦log¦V¦) and in time O(cE¦+¦V¦log¦V¦)), respectively, where E is the set of edges in the given graph, V is the set of vertices, and c is the number of classes. We present some promising implementation results. kw]Steiner Tree; Heuristic; Approximation complexity; MAX-SNP-hardness  相似文献   

17.
Let Vdenote either the space of n×n hermitian matrices or the space of n×nreal symmetric matrices, Given nonnegative integers r,s,t such that r+S+t=n, let G( r,s,r) denote the set of all matrices in V with inertia (r,s,t). We consider here linear operators on V which map G(r,s,t) into itself.  相似文献   

18.
We define the spatial numerical range V[P] of the multiparameter system P(λ), and establish a connection between V[P] and the joint spatial numerical range of a separating operator system.  相似文献   

19.
The results in this paper are based on a previously constructed exhaustion of a locally symmetric space VX by Riemannian polyhedra, i.e., compact submanifolds with corners: V=s0V(s). We show that the interior of every polyhedron V(s) is homeomorphic to V. The universal covering space X(s) of V(s) is quasi-isometric to the discrete group Γ. It can be written as the complement of a Γ-invariant union of horoballs in X (which in general have intersections giving rise to the corners). This yields exponential isoperimetric inequalities for Γπ1(V(s)). We also discuss the relation of this compactification of V with the Borel–Serre compactification.  相似文献   

20.
Let G=(V,E,ω) be an incomplete graph with node set V, edge set E, and nonnegative weights ωij's on the edges. Let each edge (vi,vj) be viewed as a rigid bar, of length ωij, which can rotate freely around its end nodes. A realization of a graph G is an assignment of coordinates, in some Euclidean space, to each node of G. In this paper, we consider the problem of determining whether or not a given realization of a graph G is rigid. We show that each realization of G can be epresented as a point in a compact convex set ; and that a generic realization of G is rigid if and only if its corresponding point is a vertex of Ω, i.e., an extreme point with full-dimensional normal cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号