首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.  相似文献   

2.
Wang X  Wang Y  Liu Q  Li Y  Yu J  Xu R 《Inorganic chemistry》2012,51(8):4779-4783
A family of novel 2D-layered lanthanide germanates K(3)[Tb(x)Eu(1-x)Ge(3)O(8)(OH)(2)] (x = 1, 0.88, 0.67, 0; denoted as TbGeO-JU-87, Tb(0.88)Eu(0.12)GeO-JU-87, Tb(0.67)Eu(0.33)GeO-JU-87, and EuGeO-JU-87) were synthesized under mild hydrothermal conditions in a concentrated gel system. They are isostructural, as confirmed by the powder X-ray diffraction analysis. The single-crystal X-ray diffraction analysis of EuGeO-JU-87 reveals that it is a 2D-layered [EuGe(3)O(8)(OH)(2)](n)(3n-) anionic framework, which is built up from GeO(4)H/GeO(4) tetrahedra and EuO(6) octahedra by sharing vertex O atoms. Charge neutrality is achieved by K(+) ions located in the free void space. Interestingly, photoluminescence studies show that Tb(0.88)Eu(0.12)GeO-JU-87 and Tb(0.67)Eu(0.33)GeO-JU-87 exhibit a high Tb(3+)-to-Eu(3+) energy-transfer efficiency and the Tb(x)Eu(1-x)GeO-JU-87 system displays tunable photoluminescent properties.  相似文献   

3.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

4.
Lanthanide complexes based on bis(amides) of diethylenetriaminepentaacetic acid with thiol functionalities are modified with 2,2'-dipyridyl disulfide to give activated complexes that can selectively react with thiol-functionalized complexes to form heterometallic lanthanide macrocycles. The preparation and full characterization of the polyaminocarboxylate ligands N,N'-bis[p-thiophenyl(aminocarbonyl)]diethylenetriamine-N,N',N'-triacetic acid (H(3)L(x)) and the activated N,N'-bis[p-(pyridyldithio)[phenyl(aminocarbonyl)]]diethylenetriamine-N,N',N'-triacetic acid (H(3)L(y)) and the complexes LaL(x), NdL(x), SmL(x), EuL(x), GdL(x), DyL(x), TbL(x), ErL(x), and YbL(x) are reported. The luminescence properties of the LnL(x) complexes emitting in the visible (where Ln = Dy(3+), Tb(3+), Eu(3+), and Sm(3+)) are examined by steady-state and time-resolved photoluminescence, and the triplet state energy level of GdL(x) was estimated to be 24?100 cm(-1) from the 0-0 band of the 77 K phosphorescence spectrum. Near-infrared emission was detected for the NdL(x), YbL(x), and ErL(x) complexes, demonstrating the versatility of the thiophenol chromophore. The assembly of purely heterometallic EuTbL(x)(2) macrocycles by reaction of EuL(x) with TbL(y) was followed by UV-vis absorption spectroscopy, monitoring the characteristic absorption peak of pyridyl-2-thione at 353 nm. Analysis of the solution by mass spectrometry reveals the formation of purely heterometallic macrocycle EuTbL(x)(2). This is in contrast with the results obtained by dynamic self-assembly under oxidative conditions, where we observe a statistical mixture of macrocyclic complexes of Eu(2)L(x)(2), Tb(2)L(x)(2), and EuTbL(x)(2). The EuTbL(x)(2) macrocycle displays dual color emission, incorporating the characteristic f-f transitions of Eu(3+) and Tb(3+). Investigation into the time-resolved photophysical properties of EuTbL(x)(2) reveals energy transfer from Tb(3+) to Eu(3+), facilitated by the different conformations of the macrocycle in solution.  相似文献   

5.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

6.
A new ligand, N,N'-di(pyridine N-oxide-2-yl)pyridine-2,6-dicarboxamide (LH2) and its several lanthanide (III) complexes (La, Eu, Gd, Tb, Y) were synthesized and characterized in detail based on elemental analysis, conductivity measurements, IR, 1H NMR, MS (FAB) and UV spectra and TG-DTA studies. The results indicated that the composition of these binary complexes is [Ln(LH2)(NO3)2.H2O]NO3.nH2O (n=0-1); while the ligand has a good planar structure with strong hydrogen bonds. The fluorescence spectra exhibits that the Tb (III) complex and the Eu (III) complex display characteristic metal-centered fluorescence in solid state while ligand fluorescence is completely quenched. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectivity in transferring energy from the lowest triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D1) of Eu (III).  相似文献   

7.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

8.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

9.
The effect of Y(III) and Gd(III) coactivator ions on the intensity of Eu(III) and Tb(III) luminescence in monomer and polymer mixed-metal complexes was studied. Isomorphic replacement of Eu(III) and Tb(III) ions by Y(III) and Gd(III) ions in macromolecular complexes led to sensitization of Eu(III) and Tb(III) ion luminescence. A mechanism of columinescence was suggested. It involves a charge transfer and the ligand orbitals and the vacant orbitals of Eu(III) and Tb(III) ions and coactivators.  相似文献   

10.
The structures and magnetic properties of four isomorphous nonanuclear heterometallic complexes [Na(2){Mn(3)(III)(μ(3)-O(2-))}(2)Ln(III)(hmmp)(6)(O(2)CPh)(4)(N(3))(2)]OH·0.5 CH(3)CN·1.5H(2)O are reported, where Ln(III) = Eu (1), Gd (2), Tb (3) and Dy (4), H(2)hmmp = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol. Complexes 1-4 were prepared by the reactions of hmmpH(2) with a manganese salt and the respective lanthanide salt together with NaO(2)CPh and NaN(3). Single-crystal X-ray diffraction analyses reveal that the six Mn(III) and one Ln(III) metal topology in the aggregate can be described as a bitetrahedron. The two peripheral [Mn(III)(3)(μ(3)-O(2-))](7+) triangles are each bonded to a central Ln(III) ion with rare distorted octahedral geometry. The magnetic properties of all the complexes were investigated using variable temperature magnetic susceptibility and both antiferromagnetic and ferromagnetic interactions exist in the [Mn(III)(3)(μ(3)-O(2-))](7+) triangle. Weak ferromagnetic exchange between the Ln(III) and Mn(III) ions has been established for the corresponding Gd derivative. The Gd, Tb and Dy complexes show no evidence of slow relaxation behaviour above 2.0 K.  相似文献   

11.
A family of six dinuclear lanthanide complexes have been obtained via in situ hydrothermal synthesis with lanthanide ions as catalyst. These six complexes are formulated as [Ln(2)(3-Htzba)(2)(3-tzba)(2)(H(2)O)(8)]·4H(2)O [Ln = Gd, 1; Dy, 2; Eu, 3; Tb, 4; Sm, 5; Er, 6; 3-H(2)tzba = 3-(1H-tetrazol-5-yl)benzoic acid]. The magnetic investigations show that complex 2 behaves as a single-molecule magnet (SMM) with a quantum relaxation time of ~10(-2) s.  相似文献   

12.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

13.
Gd(2)(WO(4))(3) doped with Eu(3+) or Tb(3+) thin phosphor films with dot patterns have been prepared by a combinational method of sol-gel process and microcontact printing. This process utilizes a PDMS elastomeric mold as the stamp to create heterogeneous pattern on quartz substrates firstly and then combined with a Pechini-type sol-gel process to selectively deposit the luminescent phosphors on hydrophilic regions, in which a Gd(2)(WO(4))(3):Ln(3+) (Ln=Eu, Tb) precursor solutions were employed as ink. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra, as well as low voltage cathodoluminescence (CL) spectra were carried out to characterize the obtained samples. Under ultraviolet excitation and low-voltage electron beams excitation, the Gd(2)(WO(4))(3):Eu(3+) samples exhibit a strong red emission arising from Eu(3+)(5)D(0,1,2)-(7)F(1,2) transitions, while the Gd(2)(WO(4))(3):Tb(3+) samples show the green emission coming from the characteristic emission of Tb(3+) corresponding to (5)D(4)-(7)F(6,5,4,3) transitions. The results show that the patterning of rare earth-doped phosphors through combining microcontact printing with a Pechini-type sol-gel route has potential for field emission displays (FEDs) applications.  相似文献   

14.
The synthesis and photophysical properties of novel luminescent ruthenium(II) bipyridyl complexes containing one, two, or six lower rim acid-amide-modified calix[4]arene moieties covalently linked to the bipyridine groups are reported which are designed to coordinate and sense luminescent lanthanide ions. All the Ru-calixarene complexes synthesized in this work are able to coordinate Nd(3+), Eu(3+), and Tb(3+) ions with formation of adducts of variable stoichiometry. The absorbance changes allow the evaluation of association constants whose magnitudes depend on the nature of the complexes as well as on the nature of the lanthanide cation. Lanthanide cation complex formation affects the ruthenium luminescence which is strongly quenched by Nd(3+) ion, moderately quenched by the Eu(3+) ion, and poorly or moderately increased by the Tb(3+) ion. In the case of Nd(3+), the excitation spectra show that (i) the quenching of the Ru luminescence occurs via energy transfer and (ii) the electronic energy of the excited calixarene is not transferred to the Ru(bpy)(3) but to the neodymium cation. In the case of Tb(3+), the adduct's formation leads to an increase of the emission intensities and lifetimes. The reason for this behavior was ascribed to the electric field created around the Ru calix[4]arene complexes by the Tb(3+) ions by comparison with the Gd(3+) ion, which behaves identically and can affect ruthenium luminescence only by its charge. However, especially for compounds 1 and 3, it cannot be excluded that some contribution comes from the decrease of vibrational motions (and nonradiative processes) due to the rigidification of the structure upon Tb(3+) complexation. In the case of Eu(3+), compounds 1, 2, and 4 were quenched by the lanthanide addition but the quenching of the ruthenium luminescence is not accompanied by europium-sensitized emission which suggests that an electron-transfer mechanism is responsible for the quenching. On the contrary, compound 3 exhibits enhanced emission upon addition of Eu(3+) (as nitrate salt); it is suggested that the lack of quenching in the [3.2Eu(3+)] adduct is due to kinetic reasons because the electron-transfer quenching process is thermodynamically allowed.  相似文献   

15.
The emission spectra of luminescent trivalent europium (Eu3+) and terbium (Tb3+) complexes were measured using a microscope laser Raman spectrometer with a doubled Nd:YAG laser (532 nm) and an Ar laser (488 nm). Excitation at 532 and 488 nm corresponded to wavelengths of the 7F1 --> 5D1 band of Eu3+ and the 7F6 --> 5D4 band of Tb3+, respectively. The Eu3+ and Tb3+ complexes were discriminated by high-resolution emission spectra more distinctly and sensitively than by fluorescence spectrometry, the usual analytical method.  相似文献   

16.
The isostructural heterometallic complexes [Ln(III)(2)Mn(III)(2)O(2)(ccnm)(6)(dcnm)(2)(H(2)O)(2)] (Ln = Eu (1Eu), Gd (1Gd), Tb (1Tb), Er (1Er); ccnm = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide) have been synthesised and structurally characterised. The in situ transition metal promoted nucleophilic addition of water to dcnm, forming the derivative ligand ccnm, plays an essential role in cluster formation. The central [Ln(III)(2)Mn(III)(2)(O)(2)] moiety has a "butterfly" topology. The coordinated aqua ligands and the NH(2) group of the ccnm ligands facilitate the formation of a range of hydrogen bonds with the lattice solvent and neighbouring clusters. Magnetic measurements generally reveal weak intracluster antiferromagnetic coupling, except for the large J(MnMn) value in 1Gd. There is some evidence for single molecule magnetic (SMM) behaviour in 1Er. Comparisons of the magnetic properties are made with other recently reported butterfly-type {Ln(III)(x)M(III)(4-x) (d-block)} clusters, x = 1, 2; M = Mn, Fe.  相似文献   

17.
A novel ligand, N2,N6-bis[2-(3-methylpyridyl)]pyridine-2,6-dicarboxamide (L2) and the corresponding Eu(III) and Tb(III) hydrochlorate complexes have been synthesized and characterized in detail based on elemental analysis, IR and NMR. The crystal and molecular structure of the complexes was determined by X-ray crystallography. The Eu(III) and Tb(III) ions were found to coordinate to the amido nitrogen atoms and pyridine nitrogen atoms. The luminescence properties of lanthanide complexes in solid state, in different solutions and in different pH value were investigated. The result shows that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes, and the ligand (L2) is an excellent sensitizer to Tb(III) ion.  相似文献   

18.
New heteroleptic triple-decker terbium complexes of general structure [Br(4)TPP]Tb[(15C5)(4)Pc]Tb[Br(4)TPP] (Tb-TD) and [Br(4)TPP]Tb[(15C5)(4)Pc]Tb[(15C5)(4)Pc] (Tb-TD*) (Br(4)TPP = tetrakis-meso-(4-bromophenyl)-porphyrin, (15C5)(4)Pc = tetra-(15-crown-5)-phthalocyanine) are synthesized with 48% and 57% yields, respectively. The triple-decker complexes were prepared by interaction of generated in situ terbium monoporphyrinate [Br(4)TPP]Tb(acac) and corresponding double-decker precursors. The heteroleptic double-decker precursor [Br(4)TPP]Tb[(15C5)(4)Pc] was prepared for the first time in a two step one-pot synthesis. No ligand scrambling was observed in the synthesis of Tb-TD, while 4% scrambling was determined in the case of Tb-TD*. High yields of target triple-decker complexes were achieved despite the presence of electron-donating crown-ether fragments with low thermal stability at the phthalocyanine deck. Analysis of lanthanide-induced paramagnetic shifts of protons of Tb-TD together with data of previously reported La, Pr, Nd and Eu analogues allowed precise separation of contributions of contact and dipolar lanthanide terms as well as verification of isostructurality of complexes within the series.  相似文献   

19.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

20.
Rare-earth ternary complexes Eu(X)Y(1-X)(TTA)3Dipy {X=0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0, using thenoyltrifluoroacetone (TTA) as ligand and 2,2'-dipyridyl (Dipy) as synergic agent} were synthesized. Characterization with X-ray diffraction (XRD), IR and elemental analysis had also been carried out. The photophysical properties of these complexes were studied in detail with ultraviolet absorption spectra and fluorescent spectra. It is found that the enhanced luminescence of Eu(3+) ions by Y(3+) ions occurs in ternary complexes. And we monitored the spectra of Eu(X)Y(1-X)(TTA)3Dipy (PVK:Eu/BCP/AlQ/Al) at the different rate (rpm). The results showed that the Y(3+) ion acts as an energy transfer bridge that helps energy transfer from PVK to Eu(3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号