首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Di Teodoro F  Brooks CD 《Optics letters》2005,30(24):3299-3301
A Q-switched microchip laser generating 1064 nm wavelength, subnanosecond pulses at a 13.4 kHz repetition rate was used to seed a dual-stage amplifier featuring a 40 microm core Yb-doped photonic-crystal fiber (PCF) as the power amplifier. From this source, we obtained diffraction-limited (M2 = 1.05), approximately 450 ps pulses of energy > 0.7 mJ, peak power in excess of 1.5 MW, and an average power of approximately 9.5 W. By further amplifying the PCF output in a multimode 140 microm core Yb-doped fiber, we generated a peak power in excess of 4.5 MW, the highest obtained in a fiber source to our knowledge.  相似文献   

2.
基于自调Q光纤激光器的基本理论,结合速率方程理论与自调Q特点,借助简化的环形腔掺Er3+光纤激光器模型,分析了泵浦功率与自调Q脉冲周期、峰值功率的关系.随着泵浦功率的增加,光纤激光器自调Q脉冲的周期减小,峰值功率变大;当信号光强足够大时,激光器的自调Q现象消失,变为准连续激光输出.通过MATLAB编程对光纤激光器输出特性进行了数值模拟,模拟结果与实验结果基本相符.  相似文献   

3.
Ilday FO  Buckley JR  Lim H  Wise FW  Clark WG 《Optics letters》2003,28(15):1365-1367
We report the generation of 6-nJ chirped pulses from a mode-locked Yb fiber laser at 1.03 micrometre. A linear anomalous-dispersion segment suppresses wave-breaking effects of solitonlike pulse shaping at high energies. The dechirped pulse duration is 50 fs, and the energy is 5 nJ. This laser produces twice the pulse energy and average power, and approximately five times the peak power, of the previous best mode-locked fiber laser. It is to our knowledge the first fiber laser that directly offers performance similar to that of solid-state lasers such as Ti:sapphire.  相似文献   

4.
Fan YX  Lu FY  Hu SL  Lu KC  Wang HJ  Dong XY  He JL  Wang HT 《Optics letters》2004,29(7):724-726
A cw laser-diode-pumped Yb-doped double-clad fiber laser operating in a hybrid Q-switched regime was demonstrated. The output pulses had a duration as short as 4.2 ns, a tunable wavelength range from 1080.8 to 1142.7 nm, and a linewidth of less than 0.05 nm. Maximum peak power of approximately 175 kW and single-pulse energy of 1.57 mJ were obtained.  相似文献   

5.
We demonstrate low-threshold supercontinuum generated in a highly nonlinear arsenic selenide chalcogenide nanowire with tailored dispersion. The tapered submicrometer chalcogenide fiber exhibits an ultrahigh nonlinearity, n(2) approximately 1.1x10(-17) m(2)/W and an effective mode area of 0.48 mum(2), yielding an effective nonlinearity of gamma approximately 93.4 W/m, which is over 80,000 times larger than standard silica single-mode fiber at a wavelength of approximately 1550 nm. This high nonlinearity, in conjunction with the engineered anomalous dispersion, enables low-threshold soliton fission leading to large spectral broadening at a dramatically reduced peak power of several watts, corresponding to picojoule energy.  相似文献   

6.
We have demonstrated Raman small-core As-Se fiber. More than 20-dB of gain was observed in a 1.1-m length of fiber pumped by a nanosecond pulse of approximately 10.8-W peak power at 1.50 microm. The peak of the Raman gain occurred at a shift of approximately 240 cm(-1). The Raman gain coefficient is estimated to be approximately 2.3 x 10(-11) m/W, which is more than 300 times greater than that of silica. The large Raman gain coefficient coupled with the large IR transparency window of these fibers shows promise for development of As-Se Raman fiber lasers and amplifiers in the near-, mid-, and long-IR spectral regions.  相似文献   

7.
We report on the use of a single-polarization, 41 μm core-diameter, intrinsically single-mode photonic crystal fiber (PCF) to obtain high peak power (up to 800 kW), 1 ns-duration pulses in a 100:1 linearly polarized, intrinsically single-mode (M2  1.2) output. By transmitting the PCF output through nonlinear crystals, we also obtained efficient second, third, and fourth harmonic generation resulting in peak power >400 kW in the visible (green, 531 nm) and 200 kW in the UV (265.5 nm). To our knowledge these results represent the highest peak power obtained in a linearly polarized output from a fiber and the highest peak power in the visible and UV obtained through harmonic generation of the direct fiber output.  相似文献   

8.
A high-power Er:YAG laser that is in-band pumped by a high-power cladding-pumped erbium-ytterbium codoped fiber laser operating at 1532 nm is reported. The Er:YAG laser produced 60.3 W of continuous-wave output at 1645.3 nm in a beam with M2 approximately equal to 3 for 82 W of incident pump power and 20 W of TEM00 output with M2 < 1.2 for 32.4 W of incident pump power. The slope efficiency with respect to incident pump power at pump powers of >20 W was approximately 81%. In the Q-switched mode of operation, a slightly modified resonator configuration incorporating an electro-optic Q switch produced pulses of approximately 4 mJ energy and approximately 100 ns (FWHM) duration, corresponding to a peak power of approximately 42 kW at a repetition rate of 1 kHz for an incident pump power of 16.8 W. The prospects for further improvement in continuous-wave and Q-switched performance are discussed.  相似文献   

9.
Kieu K  Mansuripur M 《Optics letters》2006,31(24):3568-3570
We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power approximately 102 W, duration approximately 160 ns) at a low pump-power threshold (approximately 3 mW).  相似文献   

10.
We report on a passively mode-locked all-fiber laser oscillator at 1.5 microm based on heavily doped phosphate-glass active fiber. An active fiber only 20 cm long is sufficient to produce as much as 2.4 W of average output power directly from the oscillator. The width of the mode-locked pulses varies from 8 ps at the lowest output power in the mode-locked state to 44 ps at the highest power. Our picosecond laser oscillator features a high repetition rate of 95 MHz and high peak pulse power of approximately 540 W. The oscillator combines the convenience of all-fiber construction with power performance that was previously achievable only with mode-locked bulk-optic laser oscillators or more complex systems involving fiber amplifiers.  相似文献   

11.
Amplification in a single-clad, large-mode-area erbium fiber as an alternative to double-clad Er-Yb amplifiers is presented. Both signal and pump are coupled through a mode-matched splice into the fundamental mode, which ensures preferential gain in the fundamental mode while minimizing the amplified spontaneous emission (ASE). The 875 microm(2) effective area of the Er fiber enables amplification of 6 ps pulses at 1.55 microm wavelength by approximately 33 dB in a single stage to >25 kW peak power with low nonlinear pulse distortion and a diffraction-limited output beam with M(2)<1.1.  相似文献   

12.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

13.
Fan J  Dogariu A  Wang LJ 《Optics letters》2005,30(12):1530-1532
We propose and experimentally demonstrate a new method of generating correlated photons in a microstructure fiber by means of a reversed degenerate four-wave-mixing process. Here one photon is annihilated from each of the bichromatic pump pulses to generate a pair of photons at the mean frequency. For a microstructure fiber as short as 1.5 m the measured coincidence counting rate is approximately eight times that of the accidental coincidences with a peak pump power of 0.25 W.  相似文献   

14.
Stephen M  Krainak M  Riris H  Allan GR 《Optics letters》2007,32(15):2073-2075
We report on the development of a fiber-based laser transmitter designed for active remote sensing spectroscopy. The transmitter uses a master oscillator power amplifier (MOPA) configuration with a distributed feedback diode-laser master oscillator and an erbium-doped fiber amplifier. The output from the MOPA is frequency-doubled with a periodically poled potassium titanium oxide phosphate crystal. With 35 W of single-frequency peak optical pump power, 8 W of frequency-doubled peak power was achieved. The utility of this single-frequency, wavelength tunable, power scalable laser was then demonstrated in a spectroscopic measurement of diatomic oxygen A band.  相似文献   

15.
报道了一种基于主振荡放大技术的全光纤脉冲激光器.种子激光器使用直接调制的单纵模半导体激光器,其输出波长为1 063.8 nm,重复频率100 kHz~10 MHz连续可调谐,光纤放大器采用了多级放大器级联的方法.在重复频率100 kHz、脉冲宽度5 ns时,激光器获得了平均功率为1.2 W,峰值功率为2.4 kW的单横模激光脉冲输出.  相似文献   

16.
A short-pulse, two-color Yb:fiber laser system has been developed for mid-infrared generation. To date, 20 microW of average power at a wavelength of approximately 18 microm is generated by difference-frequency mixing 300 mW average power from the two-color Yb:fiber amplifier. The mid-infrared power was not limited by two-photon absorption, allowing it to be scaled by increasing the amplifier power.  相似文献   

17.
高功率窄线宽光纤激光器在非线性频率转换、光谱合成以及相干合成等领域有着重要的应用前景。本文基于自研的复合腔结构窄线宽振荡器作为种子,采用单级主振荡功率放大技术(MOPA),实现了5 kW高效率的近单模窄谱激光输出。通过优化振荡器的时序特性和放大级结构,受激拉曼散射、光谱展宽和热致模式不稳定效应得到综合抑制。在最高功率时,信号光的3 dB和20 dB线宽分别为0.48 nm和2.1 nm,放大器的斜率效率约为86.1%,拉曼抑制比为28.3 dB,光束质量M2约1.35。本研究工作对于高功率窄线宽光纤激光的发展和研究具有重要的指导意义。  相似文献   

18.
We demonstrate propagation of 14 nJ femtosecond pulses through a large-mode-area, higher-order-mode (HOM) fiber with an effective area of 2100 microm2. The pulses propagate stably in the LP07 mode of the fiber through lengths as long as 12 m. The strongly chirped pulses exiting the amplifier fiber are dechirped by the high-order-mode fiber, resulting in pulses with a peak power of 61 kW after propagation in 5 m of the positive-dispersion fiber. A small amount of self-phase modulation is observed in the compressed pulses and is described well by a nonlinear Schr?dinger equation model that takes into account the measured effective area and dispersion of the HOM fiber.  相似文献   

19.
We present results on a high-power, cladding-pumped, Yb-doped fiber emitting at 977 nm in laser and ampllified-spontaneous-emission source configurations. We obtained up to 1.4 W of fiber-coupled, single-mode output power and slope efficiency as high as 68%. To our knowledge these are the highest powers efficiencies achieved from a single-mode fiber laser at approximately 980 nm and the first demonstrated results on a high-power amplified-spontaneous-emission source in this wavelength range. High power and high slope efficiency are achieved by using a high numerical aperture (> 0.7), a jacketed air-clad fiber, and a high-brightness pump source. Both types of sources exhibit relative intensity noise below -130 dB/Hz and are thus suitable for a wide range of applications.  相似文献   

20.
A mid-infrared supercontinuum (SC) is generated in ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF...) fluoride fibers from amplified nanosecond laser diode pulses with a continuous spectrum from approximately 0.8 microm to beyond 4.5 microm. The SC has an average power of approximately 23 mW, a pump-to-SC power conversion efficiency exceeding 50%, and a spectral power density of approximately -20 dBm/nm over a large fraction of the spectrum. The SC generation is initiated by the breakup of nanosecond laser diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened primarily through fiber nonlinearities in approximately 2-7 m lengths of ZBLAN fiber. The SC long-wavelength edge is consistent with the intrinsic ZBLAN material absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号