首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniform Co(1-)(x)Ni(x)Fe(2)O(4) (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanofibers with average diameter of 110 nm and length up to several millimeters were prepared by calcination of electrospun precursor nanofibers containing polymer and inorganic salts. The as-spun and calcined nanofibers were characterized in detail by TG-DTA, XRD, FE-SEM, TEM, SAED and VSM, respectively. The effect of composition of the nanofibers on the structure and magnetic properties were investigated. The nanofibers are formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) as the structure-directing template. The structural characteristics and magnetic properties of the resultant nanofibers vary with chemical composition and can be tuned by adjusting the Co/Ni ratio. Both lattice parameter and particle size decrease gradually with increasing nickel concentration. The saturation magnetization and coercivity lie in the range 29.3-56.4 emu/g and 210-1255 Oe, respectively, and both show a monotonously decreasing behavior with the increase in nickel concentration. Such changes in magnetic properties can mainly be attributed to the lower magnetocrystalline anisotropy and the smaller magnetic moment of Ni(2+) ions compared to Co(2+) ions. Furthermore, the coercivity of Co-Ni ferrite nanofibers is found to be superior to that of the corresponding nanoparticle counterparts, presumably due to their large shape anisotropy. These novel one-dimensional Co-Ni ferrite magnetic nanofibers can potentially be used in micro-/nanoelectronic devices, microwave absorbers and sensing devices.  相似文献   

2.
The magneto-optical properties of Au-Co(x)Fe(3?-?x)O(4) core-shell nanowires embedded in porous alumina membranes are studied. The structures were obtained by depositing Co(x)Fe(3?-?x)O(4) on the pore walls of alumina membranes by atomic layer deposition and filling the resulting nanotube with gold by electrodeposition. The effect of plasmon resonance excitation on the magneto-optical activity is clearly observed as a modification of the spectral line shape of the Kerr rotation signal.  相似文献   

3.
There have been few reports on Bi-Fe intermetallic compounds because Bi and Fe are immiscible in the equilibrium states and neither alloy nor intermetallic compound exists in the binary system. In this paper, we show that, by using the nanometer-scale templates based synthesis in conjunction with the electrochemical deposition, it is possible to mix in solid solution elements that are immiscible in traditional fabrication methods. The preparation of Bi-Fe intermetallic compound nanowire arrays was investigated via an electrodeposition route by using a polycarbonate (PC) membrane template. Cyclic voltammetry, potentiostatic transient, and potentiostatic stripping were used to study the formation of Bi(x)Fe(1-x) intermetallic compounds. The compositions of Bi(1-x)Fe(x) intermetallic compound nanowire arrays were sensitive to the bath compositions and the electrodeposition potentials, and the length could be easily adjusted by varying the electrodeposition time. The electrodeposited Bi(1-x)Fe(x) intermetallic compound nanowire arrays had a parallel-to-the-wire easy magnetization. Furthermore, the spin-glass such as behavior and an unusually large characteristic time, which was about 5.26 h, were found in Bi(1-x)Fe(x) intermetallic compound nanowire arrays at room temperature.  相似文献   

4.
The monoclinic perovskite BiCo(1-x) Fe(x) O(3) (x≈0.7) undergoes a second-order structural transition from tetragonal to monoclinic, which is accompanied by a rotation of the polarization vector from the [001] to [111] directions of a pseudo cubic cell. The crystal structure, determined by electron diffraction and powder synchrotron X-ray diffraction, was the same as that of Pb(Ti(1-x) Zr(x) )O(3) at the morphotropic phase boundary.  相似文献   

5.
Mg(x)Zn(1-x)O ternary alloy nanocrystals with hexagonal wurtzite structures were fabricated by using the sol-gel method. X-ray diffraction patterns, UV-vis absorption spectra, and photoluminescence spectra were used to characterize the structural and optical properties of the nanocrystals. For as-prepared nanocrystals, the band gap increases with increasing Mg content. Weak excitonic emission with strong deep-level emission related to oxygen vacancy and interface defects is observed in the photoluminescence spectra at room temperature. Thermal annealing in oxygen was used to decrease the number of defects and to improve the quality of the nanocrystals. In terms of XRD results, the grain sizes of nanocrystals increase with increasing annealing temperature and the lattice constants of alloy are smaller than those of pure ZnO. The band gap becomes narrower with increasing annealing temperature. For Mg(x)Zn(1-x)O nanocrystals (x=0.03-0.15) annealed at temperatures ranging from 500 to 1000 degrees C, intense near-band-edge (NBE) emissions and weak deep-level (DL) emissions are observed. Consequently, the quality of Mg(x)Zn(1-x)O nanocrystals can be improved by thermal annealing.  相似文献   

6.
Different Li(4)SiO(4) solid solutions containing aluminum (Li(4+x)(Si(1-x)Al(x))O(4)) or vanadium (Li(4-x)(Si(1-x)V(x))O(4)) were prepared by solid state reactions. Samples were characterized by X-ray diffraction and solid state nuclear magnetic resonance. Then, samples were tested as CO(2) captors. Characterization results show that both, aluminum and vanadium ions, occupy silicon sites into the Li(4)SiO(4) lattice. Thus, the dissolution of aluminum is compensated by Li(1+) interstitials, while the dissolution of vanadium leads to lithium vacancies formation. Finally, the CO(2) capture evaluation shows that the aluminum presence into the Li(4)SiO(4) structure highly improves the CO(2) chemisorption, and on the contrary, vanadium addition inhibits it. The differences observed between the CO(2) chemisorption processes are mainly correlated to the different lithium secondary phases produced in each case and their corresponding diffusion properties.  相似文献   

7.
Bi(0.9)Sm(0.1)Fe(1-x)Mn(x)O(3), with x=0.00, 0.15, 0.30 have been synthesised by solid-state reaction. The structures of the materials, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from R3c to orthorhombic Imma symmetry is complete for the x=0.30 sample. The antiferromagnetic ordering temperature, magnitude of the ordered magnetic moment at the B-site, and the dielectric constant all decrease as a function of increasing Mn content.  相似文献   

8.
Solid solutions of spinel-type oxides with the composition NiCr x Fe2-x O4 (x = 0.0, 0.5, 1.0, 1.5, 2.0) were prepared with the glycine–nitrate combustion synthesis. Four-point DC resistivity measurements show an increase in the conductivity as more Cr is introduced into the structure, whereas dilatometer measurements show that the linear thermal expansion decreases with increasing Cr content. The oxides were used as electrode materials in a pseudo-three-electrode setup in the temperature range of 300–600 °C. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical behavior in 1% NO, 1% NO2, and 10% O2. NiCr2O4 shows high activity in NO and NO2 relative to O2 and can therefore be considered as a possible electrode material. Peaks were detected in the voltammograms recorded on NiCr2O4 in 1% NO. The origin of the peaks seems to be related to the oxidation of Cr or the formation of nitrogen-containing species formed on the surface of the electrode.  相似文献   

9.
The physical and photocatalytic properties of a novel solid solution between GaN and ZnO, (Ga(1-x)Zn(x))(N(1-x)O(x)), are investigated. Nitridation of a mixture of Ga(2)O(3) and ZnO at 1123 K for 5-30 h under NH(3) flow results in the formation of a (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution with x = 0.05-0.22. With increasing nitridation time, the zinc and oxygen concentrations decrease due to reduction of ZnO and volatilization of zinc, and the crystallinity and band gap energy of the product increase. The highest activity for overall water splitting is obtained for (Ga(1-x)Zn(x))(N(1-x)O(x)) with x = 0.12 after nitridation for 15 h. The crystallinity of the catalyst is also found to increase with increasing the ratio of ZnO to Ga(2)O(3) in the starting material, resulting in an increase in activity.  相似文献   

10.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

11.
The first mixed-metal Zn-Mg carbamates have been synthesised using a novel strategy of co-reaction between zinc and magnesium alkylamido intermediates. The complexes were structurally characterised by single-crystal X-ray diffraction; the nuclearity of these carbamato core subunits was found to vary from tetrameric to octameric with respect to the level of magnesium incorporated. The presence of magnesium in the predominantly zinc carbamato lattice was confirmed by refinement of the site occupancies of the metal atoms during the crystal data analysis, and it was found that displacement of up to 7.8% of zinc sites by magnesium atoms could be achieved before breakdown of the structure. Characterisation of the complexes' physicochemical properties revealed that they were suitable for use as single-source chemical vapour deposition (SSCVD) precursors in the deposition of Zn(x)Mg(1-x)O thin films, an emerging material with promising band-gap engineering prospects.  相似文献   

12.
As synthetic nanocatalysis strives to create and apply well-defined catalytic centers containing as few as a handful of active metal atoms, it becomes particularly important to understand the structures, compositions, and reactivity of small metal clusters as a function of size and chemical environment. As a part of our effort to better understand the oxidation chemistry of Pt clusters, we present here a comprehensive set of density functional theory simulations combined with thermodynamic modeling that allow us to map out the T-p(O)2 phase diagrams and predict the oxygen affinity of Pt(x)O(y) clusters, x = 1-3. We find that the Pt clusters have a much stronger tendency to form oxides than does the bulk metal, that these oxides persist over a wide range of oxygen chemical potentials, and that the most stable cluster stoichiometry varies with size and may differ from the stoichiometry of the stable bulk oxide in the same environment. Further, the facility with which the clusters are reduced depends both on size and on composition. These models provide a systematic framework for understanding the compositions and energies of redox reactions of discrete metal clusters of interest in supported and gas-phase nanocatalysis.  相似文献   

13.
Present paper reports the synthesis of multiferroic composite (1-x) [Ba0.8Sr0.2Ti)O3]-x[Co0.9Ni0.1Fe2O4] were x = 0.1, 0.2, 0.3 and 0.4. Both phases of the composite i.e. ferroelectric (BST) and ferrite (CNFO) are synthesized via hydroxide co-precipitation method followed by microwave sintering technique at 1100 °C. These composites were characterized for their structural, microstructural, dielectric analysis, magnetodielectric (MD) effect and ferroelectric properties. Presence of both the phases ferroelectric (BST) and ferromagnetic (CNFO) are confirmed by the x-ray diffraction and scanning electron microscopic analysis. Maxwell-Wagner type dielectric dispersion is observed in frequency dependent dielectric measurement. Temperature-dependent dielectric properties were measured from 25 °C to 500 °C at various applied frequencies. Ferroelectric behavior in the composites was confirmed by the polarization vs. Electric field analysis. The magnetodielectric effect was studied in the presence of applied magnetic field from 0 to 1 Tesla. Magnetocapacitance (%) increases with increase in the ferrite concentration in the ferroelectric phase. The maximum percentage of magnetocapacitance is observed in 60BST-40CNFO composite which is MC = 30% at the frequency 1 KHz with the applied magnetic field is 1-Tesla. Room temperature magnetic hysteresis loops show an increase in saturation magnetization (Ms) with an increase in ferrite concentration.  相似文献   

14.
First-principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2K code, have been carried out to study the A-B intersite charge transfer and the correlated electrical and magnetic properties of the perovskite BiCu(3)Fe(4)O(12), especially as regards the charge transfer. The results indicate that the charge transfer between A-site Cu and B-site Fe is by way of O 2p orbitals, and during this process orbital hybridization plays an important role. More importantly, the charge transfer is of 3d(9) + 4d(5)L(0.75) →3d(9)L + 4d(5) type (here L denotes an oxygen hole or a ligand hole). During this process, the magnetic interaction experiences a transition from Cu-Fe ferrimagnetic coupling to G-type antiferromagnetic coupling within B-site Fe with paramagnetic Cu(3+). As to electrical property, it undergoes a metal to insulator transition. All our calculated results are consistent with the available experimental results.  相似文献   

15.
利用溶胶-凝胶法在800 ℃合成了硅酸盐氧基磷灰石La10-x(SiO4)6O3-1.5x(x=0,0.17,0.33,0.50和0.67),经XRD表征所得产品为磷灰石相.以电化学阻抗谱研究了硅酸盐氧基磷灰石的导电性能,体系的电导率随着间隙氧和阳离子空位数量的增多而加大,La9.33(SiO4)6O2的电导率较La9.5(SiO4)6O2.25大,是由于前者有较多的阳离子空位所致,700 ℃时La10(SiO4)6O3的电导率为7.98×10-3 S·cm-1,比La9.33(SiO4)6O2的电导率提高了5倍.氧分压从105~1 Pa变化时电导率保持不变,证明硅酸盐氧基磷灰石在较宽的氧分压范围内为O2-导电.  相似文献   

16.
The crystal and molecular structure of the layered weak-ferromagnet Fe[CH(3)PO(3)] x H(2)O has been solved by X-ray single-crystal diffraction techniques. Crystal data for Fe[CH(3)PO(3)] x H(2)O are the following: orthorhombic space group Pna2(1); a =17.538(2), b = 4.814(1), c = 5.719(1) A. The structure is lamellar, and it consists of alternating organic and inorganic layers along the a direction of the unit cell. The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. Each phosphonate group coordinates four metal ions, through chelation and bridging, making in this way a cross-linked Fe-O network. The resultant layers are then separated by bilayers of the methyl groups, with van der Waals contacts between them. The compound is air stable, and it dehydrates under inert atmosphere at temperatures above 120 degrees C. The oxidation state of the metal ion is +2, and the electronic configuration is d(6)( )()high spin (S = 2), as determined from dc magnetic susceptibility measurements from 150 K to ambient temperature. Below 100 K, the magnetic moment of Fe[CH(3)PO(3)] x H(2)O rises rapidly to a maximum at T(max) approximately equal to 24 K, and then it decreases again. The onset of peak at T = 25 K is associated with the 3D antiferromagnetic long-range ordering, T(N). The observed critical temperature, T(N), is like all the other previously reported Fe(II) phosphonates, and it appears to be nearly independent of the interlayer spacing in this family of hybrid organic-inorganic layered compounds. Below T(N), the compound behaves as a "weak ferromagnet", and represents the third kind of magnetic materials with a spontaneous magnetization below a finite critical temperature, ferromagnets and ferrimagnets being the other two types.  相似文献   

17.
The Fe K-edge X-ray absorption near-edge (XANES) spectra from Fe(1-x)Ga(x)SbO(4), having a rutile-like structure, have been investigated. Similar to the Ti K-edge XANES spectrum from TiO(2) (rutile), the low-energy pre-edge region observed in the Fe K-edge spectra is too broad to be representative of only a local, quadrupolar 1s → 3d excitation. The broadness of this peak results from the presence of a nonlocal transition, referred to as an intersite hybrid, which involves the excitation of 1s electrons to unoccupied 3d states of a next-nearest-neighbor Fe atom. (These 3d states overlap Fe 4p states of the absorbing atom through O 2p states.) With increasing Ga concentration, the intensity of the intersite hybrid peak decreases because of a deficiency of unoccupied next-nearest-neighbor 3d states. This observation provides important information on how the peak intensities of these nonlocal excitations are affected by substitution of the constituent elements.  相似文献   

18.
New solid solutions with the composition of Ca(1-x)BixVxMo(1-x)O4 prepared by a solid-state method were found as novel photocatalysts with enhanced activity for O(2) evolution from aqueous solutions containing sacrificial reagent AgNO3 under visible-light irradiation (>420 nm). The obtained solid solutions crystallized in tetragonal crystal structures, except one of the end compounds, BiVO4, which crystallized in monoclinic structures. The diffuse reflection spectra of the solid solutions shift monotonically to a long wavelength as the ratio of Bi (V) ions to Ca (Mo) ions increases in the solid solution. The band structure and the dependence of the photocatalytic properties were discussed in relation to the solid-solution compositions and photophysical properties.  相似文献   

19.
Fe3O4/ZnMg(Al)O solid base catalyst was prepared by calcining ZnMgAl‐LDHs grown on the surface of magnetic Fe3O4 synthesized by chemical coprecipitation. The magnetic property of the catalyst was studied by vibrating sample magnetometer. The results showed that the catalyst possessed excellent magnetic responsivity, and it could be recovered by external magnetic field. The magnetic catalyst was also characterized by ICP, TG‐DTG, XRD, SEM, EDS, TEM and N2 absorption‐desorption. It was found that the catalyst showed a unique porous structure. The reaction conditions affecting biodiesel yield were investigated, the biodiesel yield reached 94% was obtained under the optimal conditions. The biodiesel yield was still above 82% after 7 times of regeneration, and the catalyst can be easily separated and recycled.  相似文献   

20.
To determine the applicability of LaCo(1-x)Ni(x)O(3) in a conductive material for electrical wiring, the dependence of the electronic transport property on the Ni content is investigated via Hall effect measurements, Rietveld analyses, and band-structure calculations. Ni doping (50 mol %) into the Co sites realizes a high electrical conductivity of 1.9 × 10(3) S/cm, which is an unexpectedly high value for a LaCo(1-x)Ni(x)O(3) system, at room temperature due to the high carrier concentration of 2.2 × 10(22) cm(-3) and the small effective mass of 0.1 m(e). In addition, the high electrical conductivity is maintained from room temperature to 900 °C; that is, the temperature coefficient of the conductivity is smaller than that of standard metals. Thus, the results indicate that LaCo(0.5)Ni(0.5)O(3) is suitable as a conductive material for electrical wiring at high temperatures in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号