共查询到10条相似文献,搜索用时 15 毫秒
1.
Cherry JP Johnson AR Baraldo LM Tsai YC Cummins CC Kryatov SV Rybak-Akimova EV Capps KB Hoff CD Haar CM Nolan SP 《Journal of the American Chemical Society》2001,123(30):7271-7286
Reaction of Mo(N[R]Ar)(3) (R = (t)Bu or C(CD(3))(2)CH(3)) with N(2)O gives rise exclusively to a 1:1 mixture of nitride NMo(N[R]Ar)(3) and nitrosyl ONMo(N[R]Ar)(3), rather than the known oxo complex OMo(N[R]Ar)(3) and dinitrogen. Solution calorimetry measurements were used to determine the heat of reaction of Mo(N[R]Ar)(3) with N(2)O and, independently, the heat of reaction of Mo(N[R]Ar)(3) with NO. Derived from the latter measurements is an estimate (155.3 +/- 3.3 kcal.mol(-1)) of the molybdenum-nitrogen bond dissociation enthalpy for the terminal nitrido complex, NMo(N[R]Ar)(3). Comparison of the new calorimetry data with those obtained previously for oxo transfer to Mo(N[R]Ar)(3) shows that the nitrous oxide N-N bond cleavage reaction is under kinetic control. Stopped-flow kinetic measurements revealed the reaction to be first order in both Mo(N[R]Ar)(3) and N(2)O, consistent with a mechanism featuring post-rate-determining dinuclear N-N bond scission, but also consistent with cleavage of the N-N bond at a single metal center in a mechanism requiring the intermediacy of nitric oxide. The new 2-adamantyl-substituted molybdenum complex Mo(N[2-Ad]Ar)(3) was synthesized and found also to split N(2)O, resulting in a 1:1 mixture of nitrosyl and nitride products; the reaction exhibited first-order kinetics and was found to be ca. 6 times slower than that for the tert-butyl-substituted derivative. Discussed in conjunction with studies of the 2-adamantyl derivative Mo(N[2-Ad]Ar)(3) is the role of ligand-imposed steric constraints on small-molecule, e.g. N(2) and N(2)O, activation reactivity. Bradley's chromium complex Cr(N(i)Pr(2))(3) was found to be competitive with Mo(N[R]Ar)(3) for NO binding, while on its own exhibiting no reaction with N(2)O. Competition experiments permitted determination of ratios of second-order rate constants for NO binding by the two molybdenum complexes and the chromium complex. Analysis of the product mixtures resulting from carrying out the N(2)O cleavage reactions with Cr(N(i)Pr(2))(3) present as an in situ NO scavenger rules out as dominant any mechanism involving the intermediacy of NO. Simplest and consistent with all the available data is a post-rate-determining bimetallic N-N scission process. Kinetic funneling of the reaction as indicated is taken to be governed by the properties of nitrous oxide as a ligand, coupled with the azophilic nature of three-coordinate molybdenum(III) complexes. 相似文献
2.
3.
Oldenburg PD Feng Y Pryjomska-Ray I Ness D Que L 《Journal of the American Chemical Society》2010,132(50):17713-17723
Iron(II) complexes of a series of N-acylated dipyridin-2-ylmethylamine ligands (R-DPAH) have been investigated as catalysts for the cis-dihydroxylation of olefins to model the action of Rieske dioxygenases that catalyze arene cis-dihydroxylation. The Rieske dioxygenases have a mononuclear iron active site coordinated to a 2-histidine-1-carboxylate facial triad motif. The R-DPAH ligands are designed to provide a facial N,N,O-ligand set that mimics the enzyme active site. The iron(II) complexes of the R-DPAH ligands activate H(2)O(2) to effect the oxidation of olefin substrates into cis-diol products. As much as 90% of the H(2)O(2) oxidant is converted into cis-diol, but a large excess of olefin is required to achieve the high conversion efficiency. Reactivity and mechanistic comparisons with the previously characterized Fe(TPA)/H(2)O(2) catalyst/oxidant combination (TPA = tris(pyridin-2-ylmethyl)amine) lead us to postulate an Fe(II)/Fe(IV) redox cycle for the Fe(R-DPAH) catalysts in which an Fe(IV)(OH)(2) oxidant carries out the cis-hydroxylation of olefins. This hypothesis is supported by three sets of observations: (a) the absence of a lag phase in the conversion of the H(2)O(2) oxidant into a cis-diol product, thereby excluding the prior oxidation of the Fe(II) catalyst to an Fe(III) derivative as established for the Fe(TPA) catalyst; (b) the incorporation of H(2)(18)O into the cis-diol product, thereby requiring O-O bond cleavage to occur prior to cis-diol formation; and (c) the formation of cis-diol as the major product of cyclohexene oxidation, rather than the epoxide or allylic alcohol products more commonly observed in metal-catalyzed oxidations of cyclohexene, implicating an oxidant less prone to oxo transfer or H-atom abstraction. 相似文献
4.
5.
6.
Juliá-Hernández F Arcas A Vicente J 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(25):7780-7786
The complex [Pd(O,N,C-L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6-diacetylpyridine, reacts with 2-iodobenzoic acid at room temperature to afford the very stable pair of Pd(IV) complexes (OC-6-54)- and (OC-6-26)-[Pd(O,N,C-L)(O,C-C(6)H(4)CO(2)-2)I] (1.5:1 molar ratio, at -55?°C). These complexes and the Pd(II) species [Pd(O,N,C-L)(OX)] and [Pd(O,N,C-L')(NCMe)]ClO(4), (X = MeC(O) or ClO(3), L' = another monoanionic pincer ligand derived from 2,6-diacetylpyridine), are precatalysts for the arylation of CH(2)=CHR (R = CO(2)Me, CO(2)Et, Ph) using IC(6)H(4)CO(2)H-2 and AgClO(4). These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two Pd(IV) complexes was detected by ESI(+)-MS during the catalytic process. All the data obtained strongly support a Pd(II)/Pd(IV) catalytic cycle. 相似文献
7.
T. L. Rakitskaya V. O. Vasilechko T. A. Kiose G. V. Grishchuk V. Ya. Volkova 《Russian Journal of Applied Chemistry》2010,83(7):1182-1188
Desorption of palladium(II) and copper(II) from the K2PdCl4-Cu(NO3)2-KBr/H-BT-6 catalysts, in which bazalt tuff from various deposits subjected to acid modification is used as carrier, was studied. 相似文献
8.
Selenidobis(dithiolene)molybdenum(IV) and -tungsten(IV) complexes were synthesized and characterized by several methods including X-ray crystallographic analysis. The five-coordinate M (V)Se species were accessed by one-electron oxidation of the M (IV)Se complexes. M (VI)Se complexes were suggested to be formed as an intermediate in oxygen atom transfer from Me 3NO to the M (IV)Se centers. 相似文献
9.
T. L. Rakitskaya T. A. Kiose A. G. Voloshchuk L. P. Oleksenko V. Ya. Volkova L. I. Reznik 《Russian Journal of Applied Chemistry》2009,82(2):204-208
The physicochemical and structural characteristics of bazalt tuff were studied. The optimal conditions of its acid modification, at which the high-activity catalyst Pd(II)-Cu(II)-Br-/H-bazalt tuff of a low-temperature oxidation of carbon(II) oxide with air oxygen is formed, were determined. 相似文献
10.
Sugimoto H Tarumizu M Tanaka K Miyake H Tsukube H 《Dalton transactions (Cambridge, England : 2003)》2005,(21):3558-3565
A new set of molybdenum-(IV), -(V), and -(VI) compounds containing 3,6-dichloro-1,2-benzenedithiolate (bdtCl2) were isolated and characterised by crystallographic and other spectroscopic techniques as active site models of arsenite oxidase, one of the molybdoenzymes. MoO2 compounds were prepared in high yields by reaction of MoO2Cl2 with bdtCl2, related dithiolene and thiocatecholate in methanol at low temperature. The bdtCl2 ligand particularly stabilised the MoO compounds with oxidation numbers of +4 and +5 as well as the MoO2 compound with an oxidation number of +6. The compounds (Et4N)2[MoVIO2(bdtCl2)2], (Et4N)2[MoIVO(bdtCl2)2] and (Et4N)[MoVO(bdtCl2)2] were successfully isolated, whereas (Et3NH)2[MoO2(thiocatecholate)2] gradually decomposed in acetonitrile. A distorted octahedral structure similar to that of was suggested for the structure of the active site of the oxidised form of arsenite oxidase on the basis of a comparison of their bond distances and angles. The bond distances and angles around the molybdenum(IV) atom in were similar to those around the molybdenum(IV) centre in the reduced form of arsenite oxidase. The reversible / couple exhibited a more positive redox potential than common MoO dithiolene compounds. Underwent an irreversible proton-coupled reduction process to yield. An oxygen atom transfer reaction of with triphenylphosphine afforded and triphenylphosphine oxide, and proceeded in second order as v=-d/dt[MoO2]=k[MoO2][PPh3]. The structures and properties of the oxo-bridged dinuclear compound (Et4N)2[MoVIO2(bdtCl2)]2(micro-O), a dimer of bdtCl2 and were also characterised. 相似文献