首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
祁菁  金晶  胡海龙  高平奇  袁保和  贺德衍 《物理学报》2006,55(11):5959-5963
以SiH4,Ar和H2为反应气体,采用射频等离子体化学气相沉积方法在300℃下制备了低温多晶Si薄膜.实验发现,反应气体中H2的比例是影响薄膜结晶质量的重要因素,在适量的H2比例下制备的多晶Si薄膜具有结晶相体积分数高,氢含量低,生长速率快、抗杂质污染等特性. 关键词: 低温多晶Si薄膜 等离子体CVD 4')" href="#">Ar稀释SiH4 2比例')" href="#">H2比例  相似文献   

2.
There are two major difficulties in the TiO2 liquid-solid photocatalytic system: effective immobilization of the TiO2 particles; and improving the catalytic activity under visible light. To simultaneously solve these two problems, Fe2O3-TiO2 coatings supported on activated carbon fiber (ACF), have been prepared in one step by a convenient and efficient method—metal organic chemical vapor deposition (MOCVD). XRD results revealed that Fe2O3-TiO2 coatings mainly composed of anatase TiO2, α-Fe2O3 phases and little Fe2Ti3O9. The pore structure of ACF was preserved well after loading with Fe2O3-TiO2 coatings. UV-vis diffuse reflectance spectra showed a slight shift to longer wavelengths and an enhancement of the absorption in the visible region for Fe2O3-TiO2 coatings, compared to the pure TiO2 sample. A moderate Fe2O3-TiO2 loading (13.7 wt%) was beneficial to mineralizing wastewater because the intermediates could be adsorbed onto the surface of photocatalyst following decomposition. The stable performance revealed that the Fe2O3-TiO2 coatings were strongly adhered to the ACF surface, and the as prepared catalysts could be reused showing potential application for wastewater treatment.  相似文献   

3.
Plasma-enhanced MOCVD in which metal-organic compounds are sublimated directly into the growth chamber is studied for the first time as a new low-temperature process for growing superconducting YBa2Cu3O--x thin films. Y(THD)3, Ba(THD)2, Cu(THD)2 and oxygen are used as metal sources and oxydizing agent. Emission spectroscopy reveals that activated metal-organic compounds and activated oxygen species are present during film growth. Superconducting YBa2Cu3O7-x films whose zero-resistivity temperature are 50 K and 82 K are grown at 550°C and 600°C.  相似文献   

4.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

5.
Thin films of ZnWO4 and CdWO4 were prepared by spray pyrolysis and the structural, optical, and luminescence properties were investigated. Both ZnWO4 and CdWO4 thin films showed a broad blue-green emission band. The broad band of ZnWO4 films was centered at 495 nm (2.51 eV) consisted of three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 540 nm (2.30 eV). The broad band of CdWO4 films at 495 nm (2.51 eV) could be decomposed to three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 545 nm (2.28 eV). These results are consistent with emission from the WO66− molecular complex. The luminance and efficiency for ZnWO4 film at 5 kV and 57 μA/cm2 were 48 cd/m2 and 0.22 lm/w, respectively, and for CdWO4 film the values were 420 cd/m2 and 1.9 lm/w.  相似文献   

6.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and La2Ce2O7 (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO3 is formed due to the chemical reaction between LC and Al2O3 which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.  相似文献   

7.
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2 . Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.  相似文献   

8.
Dissociative adsorption of CCl4 on TiO2 at 35 °C has been studied by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electron spin resonance. CCl4 decompose to form CO, CO2, and CO3 on the surface, at such a low temperature, in which CO2 formation is not from CO oxidation on TiO2, but CO3 can be produced by CO and CO2 adsorption. The Cl generated from CCl4 decomposition is left on the surface and bonded to titanium ions. Mineralization of CCl4 on TiO2 involves the lattice oxygens. Thermodynamical driving force and possible reaction routes for CO and CO2 formation in the CCl4 decomposition on TiO2 are discussed.  相似文献   

9.
A low-temperature chemical bath deposition (CBD) technique has been used for the preparation of Mn3O4 thin films onto glass substrates. The kinetic behavior and the formation mechanism of the solid thin films from the aqueous solution have been investigated. Structure (X-ray diffraction and Raman), morphological (atom force microscope), and optical (UV-vis-NIR) characterizations of the deposited films are presented. The results indicated that the deposited Mn3O4 thin films of smooth surface with nanosized grains were well crystalline and the optical bandgap of the film was estimated to be 2.54 eV.  相似文献   

10.
The extensive investigation of the annealing effect in nitrogen atmosphere on the structural optical and electrical properties of chemically deposited CdS films on SnO2 has been performed. The as-deposited film shows 2.45 eV band gap (Eg) and decreases with increasing annealing temperature. The film annealed at 623 K having pure hexagonal phase (a = 4.14 Å, c = 6.71 Å for [1 0 0] plane) and Eg = 2.36 eV shows 10 times higher conductivity for all temperature range, and shows two different activation energies Ea = 0.114 eV and Ea = 0.033 eV for the temperature range 395 K ≤ T ≤ 515 K and 515 K ≤ T ≤ 585 K, respectively. The structural parameters such as dislocation density, strain and optical parameters such as absorption and extinction coefficient are calculated and compared for all the films.  相似文献   

11.
Thermal stability of cathode material in the charged state is an important aspect for the safety of rechargeable batteries. It is well known that layered LixCoO2 decomposes to a mixture of LiCoO2 and Co3O4 at elevated temperatures. However, not many experimental evidences exist on intermediate phases those may form during the decomposition. Using magnetic measurements we show that it is possible to distinguish between the spinels LiCo2O4 and Co3O4 and thereby follow the decomposition of LixCoO2. We characterize the magnetic behavior of thermally aged LixCoO2 (x = 0.98, 0.76, 0.55) with increasing annealing time. Our results reveal the appearance of magnetic ordering in the thermally degraded products. The detailed analysis illustrates that the formation of Co3O4 is preceded by the formation of a meta stable LiCo2O4 phase.  相似文献   

12.
Trivalent dysprosium ions (Dy3+) doped strontium molybdate (SrMoO4) phosphors were synthesized by solid-state reaction and their photoluminescence (PL) properties were investigated. X-ray powder diffraction (XRD) analysis confirmed the formation of SrMoO4:Dy3+. PL measurements indicated that the phosphor exhibited intense emission at 482, 490 (4F9/26H15/2) and 575 nm (4F9/26H13/2) under UV excitation. The effect of the doping concentration of Dy3+in SrMoO4:Dy3+ on the PL was investigated in detail. Na+ ion was a good charge compensator for SrMoO4:Dy3+.  相似文献   

13.
The structures of LiTiPO5 and LiTi2(PO4)3, as well as the possibility of oxygen vacancies formation in the systems are studied by first-principles calculations. It is found that oxygen vacancies can be formed in LiTiPO5 and LiTi2(PO4)3 under oxygen poor condition. The formation of oxygen vacancies introduce a defect band within their band gaps, which is expected to improve the electronic conductivity of LiTiPO5 and LiTi2(PO4)3 significantly. Meanwhile, a great concentration of oxygen vacancies may increase the discharge voltage of LiTiPO5 and LiTi2(PO4)3.  相似文献   

14.
TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.  相似文献   

15.
Jaephil Cho   《Solid State Ionics》2003,160(3-4):241-245
Micron-sized LiMn2O4 particles were easily coated on LiCoO2 cathodes using an amphoteric gelatin surfactant at pH4–5. The coated LiCoO2 material showed a significantly higher thermal stability during charging and capacity retention on cycling at 4.6 V, compared to the bare LiCoO2.  相似文献   

16.
For a better understanding of the deposition mechanism of thin films in SiCl4 source gas, we have measured the spatial distributions of SiCln (n=0-2) radicals in SICl4 radio frequency glow discharge plasma utilizing a mass spectrometer equipped with a movable gas sampling apparatus. The experimental results demonstrate that the relative densities of SiCln (n=0-2) radicals have peak values at the position of 10 mm above the powered electrode along the axial direction; the relative densities of the Si and SiCIn (n=1, 2) radicals have peak values at the positions of 27mm and 7 mm away from the axis along the radial direction, respectively. Generally speaking, in the whole SICl4 plasma bulk region, the relative density of Si is one order of magnitude higher than that of SICl, and the relative density of SiCl is several times higher than that of SICl2. This reveals that Si and SiCl may be the primary growth precursors in forming thin films.  相似文献   

17.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

18.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

19.
SnO2/TiO2 mixed oxides with primary particle size ranging between 5 nm dp 12 nm were synthesized by doping a H2/O2/Ar flame with Sn(CH3)4 and Ti(OC3H7)4 co-currently. The effects of “flow coordinate,” concentration and flame configurations were investigated with respect to particle size and morphology of the generated mixed oxides. In situ characterization of the mixed oxides was performed using the particle mass spectrometer (PMS), while XRD, TEM, BET and UV–Vis were performed ex situ. Results obtained showed that primary particle size of mixed oxides can be controlled by varying experimental parameters. The mixed oxides have interesting properties compared to those of the pure oxides of TiO2 and SnO2, which were also synthesized in flames earlier. Band gap tuning opportunities are possible using mixed oxides.  相似文献   

20.
The structural properties and relaxation mechanisms of Li2KH(SO4)2 crystals were determined using the temperature dependences of NMR spectra and the spin-lattice relaxation times (T1) of their 1H, 7Li, and 39K nuclei. The results obtained were compared with the previously reported physical properties of LiKSO4 crystals. The substitution of the potassium ions with protons in the LiKSO4 crystals were variations in the phase transition temperatures, and the non-appearance of ferroelastic properties. The 7Li T1 for the Li2KH(SO4)2 crystals was much shorter than the 7Li T1 for the LiKSO4 crystals, and these findings indicate that the presence of the protons in Li2KH(SO4)2 causes the Li ions to move with greater freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号