首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The molecular structure, dynamics and paramagnetic properties of the complex cations [Ln(ptfa)2 (18-crown-6)]+ in deuterated toluene were studied for Ln = La, Ce, Pr and Nd. The activation enthalpy values of 68 ± 5, 55 ± 15 and 60 ± 13 kJ mol-1 for the 18-crown-6 conformationalinversion processes for the complexcations of Ce, Pr and Nd, respectively,were obtained. Quantitativeinvestigation of the lanthanide-induced chemical shifts shows a monotonic change of a spatial structure and magnetic susceptibility in comparison with the Bleaney predicted dependence. The free energy of molecular inversion activation for 18-crown-6 molecules in the complex cation [Ln(fod)2(18-crown-6)]+ is 74 ± 9 kJ mol-1 at 363 K, which is a little more than the value of the free energy of activation 64 ± 9 kJ mol-1 at 363 K in the complex cation [Ln(ptfa)2(18-crown-6)]+.  相似文献   

2.
1H and 13C NMR measurements are reported for the CDCl3 and CD2Cl2 solutions of [La(NO3)3(18-crown-6)] (I), [Pr(NO3)3(18-crown-6)] (II) and [Ce(NO3)3(18-crown-6)] (III) complexes. Temperature dependencies of the 1H NMR spectra of II have been analyzed using the dynamic NMR methods for multi-site exchange. Two types of conformational dynamic processes in II were identified (the first one with activation enthalpy ΔH =26 ± 4 kJ/mol is conditioned by interconversion of complex enantiomeric form and pseudorotation of macrocycle molecule upon the C 2 symmetry axis, the second one with ΔH =46 ± 5 kJ/mol is conditioned by macrocycle molecule inversion). Studies of the values of the lanthanide-induced shifts revealed that the structure of complexes in solution is similar to that reported for the complex I in the crystal state.  相似文献   

3.
1H and 13C NMR and 1H NMR relaxation spectroscopy (RS)measurements are reported for the CDCl3 and CD2Cl2 solutions of [La(NO3)3(diaza-18-crown-6)] ({bf I}), [Pr(NO3)3(diaza-18-crown-6)] ({bf II}) and [Nd(NO3)3(diaza-18-crown-6)] ({bf III}) complexes. Temperature dependencies of the 1H NMR spectra of II have been analyzed using the dynamic NMR methods for multi-site exchange. Enantiomeric isomer interconversion in II is characterized by H = 21.5 ± 4 kJ mol-1. Studies of the values of the lanthanide-induced shifts and the longitudinal relaxation rate enhancement revealed that the structure of complexes in solution is similar to that reported for the [La(NO3)3(18-crown-6)] complex in the crystal state. Nevertheless, it appears that the principal values of the molar paramagnetic susceptibility tensor (i) significantly differ in complexes II and III. The possible reasons for the different characteristics of these complexes are discussed.  相似文献   

4.
Earlier the intramolecular inversion of the 18-crown-6 molecules was found in the complex ion pairs [Ln(ptfa)2 (18-crown-6)]+ [Ln(ptfa)4] (H2O)4 where Ln = La(1), Ce (2), Pr (3), Nd (4), and ptfa is 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione. In this work the peculiarities of the molecular structure and dynamics were studied for [Eu(ptfa)2 (18-crown-6)]+ [Eu(ptfa)4] (H2O)4 (5) by NMR spectroscopy techniques. Through VT-NMR spectra analysis the temperature dependence was obtained for the rate constant. The free energy ΔG(320) of 18-crown-6 ring inversion activation was found to be 65 ± 5 kJ mol−1 for 5 in CDCl3. This result is comparable with the earlier data [S.P. Babailov and D.A. Mainichev: J. Inclusion Phenom. Macrocyclic Chem. 43, 187–193 (2002)] for complexes 2, 3, 4 in deuterated toluene (ΔG(320)=65 ± 9, 64 ± 9, 64 ± 9 kJ mol−1 respectively). It was found by relaxation NMR spectroscopy that the effective distance between Ln and protons of the crown molecule is 4.5 ± 0.2 Å. The analysis of structural parameters testifies that the crown ether and chelated anions are in the first coordination sphere of a Ln cation. Obtained geometrical parameters show that the complex cations of Eu, Ce and Pr have similar spatial structures.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

5.
Heats of solution of 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) in acetonitrile, 1,2-dichloroethane, N,N-dimethylformamide, dimethyl sulfoxide, nitromethane, propylene carbonate, pyridine and water were measured at 25 °C and the enthalpies of the transfer of 18-crown-6 from waterto the aprotic solvents were derived. The thermodynamic quantities, G1°, H1° and T S1°, for the formation of the[M(18-crown-6)]+ (M+ = Na+, K+, Rb+, Cs+, NH4 +) complexeswere determined by titration calorimetry in dimethyl sulfoxide containing0.1 mol dm-3 (C2H5)4NClO4 as a constant ionic medium at 25 °C. These thermodynamic quantities suggest that the complexationof 18-crown-6 with the alkali-metal ions mainly reflects the different solvationof 18-crown-6 and also the different degree of solvent structure.  相似文献   

6.
The thermodynamic, kinetic, and structural properties of Ln3+ complexes with the bifunctional DO3A-ACE4− ligand and its amide derivative DO3A-BACE4− (modelling the case where DO3A-ACE4− ligand binds to vector molecules) have been studied in order to confirm the usefulness of the corresponding Gd3+ complexes as relaxation labels of targeted MRI contrast agents. The stability constants of the Mg2+ and Ca2+ complexes of DO3A-ACE4− and DO3A-BACE4− complexes are lower than for DOTA4− and DO3A3−, while the Zn2+ and Cu2+ complexes have similar and higher stability than for DOTA4− and DO3A3− complexes. The stability constants of the Ln(DO3A-BACE) complexes increase from Ce3+ to Gd3+ but remain practically constant for the late Ln3+ ions (represented by Yb3+). The stability constants of the Ln(DO3A-ACE)4− and Ln(DO3A-BACE)4− complexes are several orders of magnitude lower than those of the corresponding DOTA4− and DO3A3− complexes. The formation rate of Eu(DO3A-ACE) is one order of magnitude slower than for Eu(DOTA), due to the presence of the protonated amine group, which destabilizes the protonated intermediate complex. This protonated group causes the Ln(DO3A-ACE) complexes to dissociate several orders of magnitude faster than Ln(DOTA) and its absence in the Ln(DO3A-BACE) complexes results in inertness similar to Ln(DOTA) (as judged by the rate constants of acid assisted dissociation). The 1H NMR spectra of the diamagnetic Y(DO3A-ACE) and Y(DO3A-BACE) reflect the slow dynamics at low temperatures of the intramolecular isomerization process between the SA pair of enantiomers, R-Λ(λλλλ) and S-Δ(δδδδ). The conformation of the Cα-substituted pendant arm is different in the two complexes, where the bulky substituent is further away from the macrocyclic ring in Y(DO3A-BACE) than the amino group in Y(DO3A-ACE) to minimize steric hindrance. The temperature dependence of the spectra reflects slower ring motions than pendant arms rearrangements in both complexes. Although losing some thermodynamic stability relative to Gd(DOTA), Gd(DO3A-BACE) is still quite inert, indicating the usefulness of the bifunctional DO3A-ACE4− in the design of GBCAs and Ln3+-based tags for protein structural NMR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号