首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Void nucleation, growth, and coalescence in A356 aluminum notch specimens was determined from a combination of experiments, finite element analysis, nondestructive analysis, and image analysis. Notch Bridgman tension experiments were performed on specimens to failure and then other specimens were tested to 90%, 95%, and 98% of the failure load. The specimens were evaluated with nondestructive X-ray tomography and optical image analysis. Finite element simulations of the notch tests were performed with an elastic–plastic internal state variable material model that incorporated the pertinent microstructures (silicon particle volume fraction and size distribution and porosity volume fraction and size distribution). Parametric finite element simulations were performed to give insight into various initial conditions and responses of the notch tensile bars. The various methods all corroborated the same damage progression.  相似文献   

2.
An elastic–plastic finite element analysis is presented for a notched shaft subjected to multiaxial nonproportional synchronous cyclic tension/torsion loading. The elastic–plastic material property is described by the von Mises yield criterion and the kinematic hardening rule of Prager/Ziegler. The finite element program system ABAQUS is used to solve the boundary value problem. Special emphasis is given to explore the effects of the stress amplitude, the mean-stress, and the mutual interactions on the local stress–strain responses at the notch root.  相似文献   

3.
分别对6061铝合金和7075铝合金材料的缺口圆棒试件和凹槽平板试件进行准静态拉伸试验,并采用ABAQUS软件对拉伸过程进行数值模拟。模拟结果与试验测试结果吻合很好,验证了有限元模型的合理性和可靠性。通过有限元模拟,分别给出了不同试件的应力三轴度和罗德参数随等效塑性应变的变化曲线以及两种材料的失效轨迹,并对它们进行了分析讨论。结果表明:形状相同、材料性质不同的试件,应力三轴度的演化规律不同;材料的失效应变受应力三轴度和罗德参数的影响,并且不同性质的材料对罗德参数的敏感性不同。  相似文献   

4.
Experimental data from uniaxial tensile tests on smooth and notched specimens of aluminium alloy 5083-H116 show that the material exhibits negative strain-rate sensitivity for strain rates within a certain range. The negative strain-rate dependence, which is attributed to dynamic strain aging, leads to serrated stress–strain curves, discontinuous plastic flow and propagating deformation bands during plastic straining (also denoted as the Portevin–Le Chatelier effect). Band analysis and linear perturbation analysis are performed using simple elastic-viscoplastic constitutive equations that include negative strain-rate sensitivity in a simplified manner. The negative strain-rate sensitivity allows for jumps in the plastic strain rate, which in turn permits the existence of localisation bands for the elastic-viscoplastic model. The simple elastic-viscoplastic constitutive model has been implemented in LS-DYNA, and non-linear finite element simulations of smooth and notched tensile test specimens are performed, allowing more detailed investigations into the effects of the negative strain-rate sensitivity on the material's behaviour.  相似文献   

5.
Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results.  相似文献   

6.
Non-linear finite element analyses of quasi-static and high-rate tensile tests with smooth and notched axisymmetric specimens of the structural steel Weldox 460 E have been carried out. The constitutive relation and fracture criterion of Johnson and Cook, which were adopted in the simulations, have previously been determined for Weldox 460 E steel. First, a validation study was completed to assess the accuracy of the constitutive relation and fracture criterion. The numerical results were compared with experimental data from tensile tests under quasi-static and dynamic loading conditions. Secondly, the use of Bridgman's analysis in the identification of the fracture criterion was evaluated, and the influence of adiabatic heating and inertia on the stress triaxiality in the tensile specimens was investigated. The results were finally used to discuss the identification of fracture criteria based on tensile tests with smooth and notched axisymmetric specimens.  相似文献   

7.
A direct formulation of the boundary element method using a complex variable numerical approach is presented for the time-dependent inelastic stresses in edge notched and cracked creeping metallic structural components subject to high temperature gradients. Particular attention is focused on the numerical evaluation of energy rate contour integrals in single edge cracked specimens in tension. The constitutive models used in the numerical calculation are internal state variable creep–plasticity or elastic power law creep model. Numerical results are compared with solution obtained from other methods for different loading rates.  相似文献   

8.
This investigation deals with the use of the finite element method on the reinforced concrete structural dynamic response and failure behavior when subjected to the projectile impacts of different velocities, using the test conducted in [S.J. Hanchak, M.J. Forrestal, E.R. Young, J.Q. Ehrgott, Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths, Int. J. Impact Eng. 12 (1992) 1–7]. The Johnson–Holmquist concrete material constitutive law model is employed to simulate the large strains, high strain states and high pressures to which the concrete is subjected. The projectile impact velocity ranges from 381 m/s to 1058 m/s. Numerical simulations demonstrate that the Johnson–Holmquist concrete material constitutive model can describe the different failure modes without any predefined defects in the element mesh, and normally obtain good agreement between the numerical simulations and test results.  相似文献   

9.
缺口件表象疲劳极限的定量化分析   总被引:1,自引:0,他引:1  
测定了淬火、高温回火35CrMo钢光滑试样和三种缺口试样的三点弯曲疲劳极限,并利用ANSYS有限元软件计算了缺口试样加载时缺口截面上的应力分布.用“疲劳源形成的微细观过程理论”对试验结果进行了分析,认为,疲劳源的形成虽然发生在个别薄弱晶粒内部,是其中位错往返运动及交互作用的结果,但还必须满足一定的形变协调条件和概率条件,因而必须形成由相当多晶粒组成的“细观屈服区”.对试验结果的分析表明,如取“细观屈服区”临界尺寸(xW)等于11个奥氏体晶粒平均直径,则计算得到的缺口试样的表象疲劳极限,与实测值相比,其综合误差最小.据此计算的三种缺口试样的表象疲劳极限,其误差都小于5%.该xW可认为是材料的特征参量.  相似文献   

10.
Constitutive modeling of ice in the high strain rate regime   总被引:1,自引:0,他引:1  
The objective of the present work is to propose a constitutive model for ice by considering the influence of important parameters such as strain rate dependence and pressure sensitivity on the response of the material. In this regard, the constitutive model proposed by Carney et al. (2006) is considered as a starting basis and subsequently modified to incorporate the effect of brittle cracking within a continuum damage mechanics framework. The damage is taken to occur in the form of distributed cracking within the material during impact which is consistent with experimental observations. At the point of failure, the material is assumed to be fluid-like with deviatoric stress almost dropping down to zero. The constitutive model is implemented in a general purpose finite element code using an explicit formulation. Several single element tests under uniaxial tension and compression, as well as biaxial loading are conducted in order to understand the performance of the model. Few large size simulations are also performed to understand the capability of the model to predict brittle damage evolution in un-notched and notched three point bend specimens. The proposed model predicts lower strength under tensile loading as compared to compressive loading which is in tune with experimental observations. Further the model also asserts the strain rate dependency of the strength behavior under both compressive as well as tensile loading, which also corroborates well with experimental results.  相似文献   

11.
采用HMH-206高速材料试验机开展了6061-T6铝合金在0.001~100 s-1应变率范围内的静、动态拉伸力学性能实验,分析了其应力-应变响应特征和应变率敏感性,讨论了应变率对6061-T6铝合金流动应力和应变率敏感性指数的影响,并基于实验结果对Johnson-Cook本构模型进行了修正。结合缺口试件的实验结果和模拟数据,得到了材料的Johnson-Cook失效模型参数,并对模型的准确性和适用性进行了验证。结果表明,在拉伸载荷作用下,6061-T6铝合金表现出明显的应变硬化特征和应变率敏感性,其流动应力随应变率的升高而提高,修正的Johnson-Cook本构模型可以描述材料的动态塑性流动行为,建立的Johnson-Cook失效模型能够表征材料的断裂失效行为。  相似文献   

12.
In determining structure–property relations for plasticity at different size scales, it is desired to bridge concepts from the continuum to the atom. This raises many questions related to volume averaging, appropriate length scales of focus for an analysis, and postulates in continuum mechanics. In a preliminary effort to evaluate bridging size scales and continuum concepts with descritized phenomena, simple shear molecular dynamics simulations using the Embedded Atom Method (EAM) potentials were performed on single crystals. In order to help evaluate the continuum quantities related to the kinematic and thermodynamic force variables, finite element simulations (with different material models) and macroscale experiments were also performed. In this scoping study, various parametric effects on the stress state and kinematics have been quantified. The parameters included the following: crystal orientation (single slip, double slip, quadruple slip, octal slip), temperature (300 and 500 K), applied strain rate (106–1012 s−1), specimen size (10 atoms to 2 μm), specimen aspect ratio size (1:8–8:1), deformation path (compression, tension, simple shear, and torsion), and material (nickel, aluminum, and copper). Although many conclusions can be drawn from this work, which has provided fodder for more studies, several major conclusions can be drawn.
• The yield stress is a function of a size scale parameter (volume-per-surface area) that was determined from atomistic simulations coupled with experiments. As the size decreases, the yield stress increases.
• Although the thermodynamic force (stress) varies at different size scales, the kinematics of deformation appears to be very similar based on atomistic simulations, finite element simulations, and physical experiments.
Atomistic simulations, that inherently include extreme strain rates and size scales, give results that agree with the phenomenological attributes of plasticity observed in macroscale experiments. These include strain rate dependence of the flow stress into a rate independent regime; approximate Schmid type behavior; size scale dependence on the flow stress, and kinematic behavior of large deformation plasticity.  相似文献   

13.
A finite thickness band method for ductile fracture analysis   总被引:3,自引:0,他引:3  
We present a finite element method with a finite thickness embedded weak discontinuity to analyze ductile fracture problems. The formulation is restricted to small geometry changes. The material response is characterized by a constitutive relation for a progressively cavitating elastic–plastic solid. As voids nucleate, grow and coalesce, the stiffness of the material degrades. An embedded weak discontinuity is introduced when the condition for loss of ellipticity is met. The resulting localized deformation band is given a specified thickness which introduces a length scale thus providing a regularization of the post-localization response. Also since the constitutive relation for a progressively cavitation solid is used inside the band in the post-localization regime, the traction-opening relation across the band depends on the stress triaxiality. The methodology is illustrated through several example problems including mode I crack growth and localization and failure in notched bars. Various finite element meshes and values of the thickness of the localization band are used in the calculations to illustrate the convergence with mesh refinement and the dependence on the value chosen for the localization band thickness.  相似文献   

14.
The purpose of this work is to investigate the influence of morphology, induced by cooling rate during molding, on the time–temperature dependence of fracture behavior of polypropylene (PP). Fractures tests were performed over a range of loading rates from 0.2 mm/min to 2.5 m/s, using the single edge notched bending specimen. The results show that the transition temperature from brittle to ductile behavior increases with decreasing cooling rate. However, at very low loading speed (0.2 mm/min), an opposite effect is observed, the brittle–ductile transition temperature diminishes with lower cooling rate. At low test speeds, the fracture performance is reduced with a decreasing cooling rate. Conversely, under impact, the fracture toughness of PP is enhanced with a decrease in cooling rate. This is explained by the mechanism of blunting of the crack tip due to adiabatic heating under high loading rates. The blunting effect results in a more significant plastic deformation of the crystalline region that requires a higher energy. The brittle–ductile transition was characterized by an energy activation process expressed by the Arrhenius equation. Decreasing the cooling rate results in a decrease of both the pre-exponential factor and the energy barrier controlling the time–temperature dependence of fracture behavior. The reduction of the pre-exponential factor corresponds to a more ordered morphology due to a reduction in the entropy and is consistent with a higher crystallinity. The reduction of activation energy with higher crystalline level suggests that the brittle–ductile transition also involves the primary relaxation process that is known to occur mostly in an amorphous structure. A higher crystallinity would restrain the primary relaxation processes and the brittle–ductile transition becomes more dependent on the secondary movements of the chain segments. The results demonstrate that the relationship between deformation rate, temperature, and mechanical performance of PP is not only controlled by molecular relaxation processes, but also strongly dependent on its morphology.  相似文献   

15.
A work-of-fracture method using three-point bend beam (3PBB) specimen, commonly employed to determine the fracture energy of concrete, is adapted to evaluate the mode-I cohesive fracture of fiber reinforced plastic (FRP) composite–concrete adhesively bonded interfaces. In this study, a bilinear damage cohesive zone model (CZM) is used to simulate cohesive fracture of FRP–concrete bonded interfaces. The interface cohesive process damage model is proposed to simulate the adhesive–concrete interface debonding; while a tensile plastic damage model is used to account for the cohesive cracking of concrete near the bond line. The influences of the important interface parameters, such as the interface cohesive strength, concrete tensile strength, critical interface energy, and concrete fracture energy, on the interface failure modes and load-carrying capacity are discussed in detail through a numerical finite element parametric study. The results of numerical simulations indicate that there is a transition of the failure modes controlling the interface fracture process. Three failure modes in the mode-I fracture of FRP–concrete interface bond are identified: (1) complete adhesive–concrete interface debonding (a weak bond), (2) complete concrete cohesive cracking near the bond line (a strong bond), and (3) a combined failure of interface debonding and concrete cohesive cracking. With the change of interface parameters, the transition of failure modes from interface debonding to concrete cohesive cracking is captured, and such a transition cannot be revealed by using a conventional fracture mechanics-based approach, in which only an energy criterion for fracture is employed. The proposed cohesive damage models for the interface and concrete combined with the numerical finite element simulation can be used to analyze the interface fracture process, predict the load-carrying capacity and ductility, and optimize the interface design, and they can further shed new light on the interface failure modes and transition mechanism which emulate the practical application.  相似文献   

16.
A second-order delay differential equation (DDE) which models certain mechanical and neuromechanical regulatory systems is analyzed. We show that there are points in parameter space for which 1:2 resonant Hopf–Hopf interaction occurs at a steady state of the system. Using a singularity theoretic classification scheme [as presented by LeBlanc (1995) and LeBlanc and Langford (1996)], we then give the bifurcation diagrams for periodic solutions in two cases: variation of the delay and variation of the feedback gain near the resonance point. In both cases, period-doubling bifurcations of periodic solutions occur, and it is argued that two tori can bifurcate from these periodic solutions near the period doubling point. These results are then compared to numerical simulations of the DDE.  相似文献   

17.
Post-yield creep of smooth specimens at room temperature in nine different metals was studied. Significant creep was observed in eight of the nine metals tested. The average creep strain from all tests was equal to nearly half of the total strain after one hour at constant load. Creep strains of significant magnitude were also found to occur within plastic enclaves of otherwise elastically deformed notched members. The characteristics of localized creep in the notched members strongly parallel the creep behavior observed in unnotched members. The need to consider time-dependent deformation in experimental mechanics is discussed. Post-yield time-dependent deformation as a cause of failure, as a cause of residual-stress relaxation affecting fatigue life, and as a primary feature of inelastic deformation needing to be modeled, are also discussed.  相似文献   

18.
19.
An important concern for titanium aluminides is their limited ductility and its consequences for TiAl components containing stress concentrators. In recent experiments, evidence of notch strengthening has been found in one TiAl alloy under monotonic loading. The goal of this study is to fully explore this issue through tests on two cast alloys, one with a microstructure consisting of predominantly equiaxed gamma grains and the other having a fully lamellar microstructure. Tests involve monotonic tensile loading of notched specimens at room temperature under conditions of plane stress, where the notch radii are large relative to grain size. For each material, results from the testing of three notched specimen geometries are presented and finite element models are used to interpret the test results. This includes using the numerical models to apply Weibull statistical methods to predict notch strengthening in the specimens. It is shown that notch strengthening is clearly seen in both alloys tested and thus is likely to be a characteristic of TiAl alloys in general; however, strengthening is not as great as would be predicted by Weibull statistical methods as applied to brittle materials.  相似文献   

20.
In Part I [Int. J. Solids Struct., 2003], we described the implementation of the extended finite element method (X-FEM) within Dynaflow™, a standard finite element package. In our implementation, we focused on two-dimensional crack modeling in linear elasticity. For crack modeling in the X-FEM, a discontinuous function and the near-tip asymptotic functions are added to the finite element approximation using the framework of partition of unity. This permits the crack to be represented without explicitly meshing the crack surfaces and crack propagation simulations can be carried out without the need for any remeshing. In this paper, we present numerical solutions for the stress intensity factor for crack problems, and also conduct crack growth simulations with the X-FEM. Numerical examples are presented with a two-fold objective: first to show the efficacy of the X-FEM implementation in Dynaflow™; and second to demonstrate the accuracy and versatility of the method to solve challenging problems in computational failure mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号