首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conditions for zero-energy Andreev surface bound states to exist are found for the lattice model of a d-wave superconductor with arbitrary surface orientation. Both nearest-neighbors and next-nearest-neighbors models are considered. It is shown that the results are very sensitive to the surface orientation. In particular, for a half-filled (hl0)-surface, zero-energy Andreev surface states only appear under the condition that h and l are odd simultaneously.  相似文献   

2.
Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η(m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.  相似文献   

3.
The superconductor/ferromagnet proximity effect in the Pb/Co2Cr1–xFe x Al bilayer systems has been studied. Thin films of the Heusler alloy Co2Cr1–xFe x Al have been prepared at different substrate temperatures. It has been established using Andreev spectroscopy of point contacts that the degree of spin polarization of conduction electrons in the Heusler alloy is on the order of 30 and 70% for the films prepared at a substrate temperature of 300 and 600 K, respectively. It has been found that the dependence of the superconducting transition temperature on the thickness of the Pb layer at a fixed thickness of the Heusler layer is determined by the degree of spin polarization of the conduction band in the ferromagnetic layer.  相似文献   

4.
Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the superconductor are grounded. In general, a finite current I2(V1, 0) is induced in grounded lead 2; its magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission from lead 1 to lead 2. It is known that, in the tunneling limit, when normal leads are weakly coupled to the superconductor, I2(V1, 0)=0 if |V1|<Δ, and the system is in the clean limit. In other words, Andreev and normal tunneling processes compensate each other. We consider the general case: the voltages are below the gap, the system is either dirty or clean. It is shown that I2(V1, 0)=0 for general configuration of the normal leads; if the first lead injects spin-polarized current then I2=0, but spin current in lead 2 is finite. A XISIN structure, where X is a source of the spin-polarized current, could be applied as a filter separating spin current from charge current. We do an analytical progress calculating I1(V1, V2), I2(V1, V2).  相似文献   

5.
Spin superconductivity results from the condensation of spin-triplet but charge neutralparticles (e.g., triplet excitons). We present a Laplace-type equation describingelectrostatic properties of spin superconductors. With the phenomenological equationsobtained, we show that there exists an electric “Meissner effect” against the spatialvariation of the electric field along the magnetic moment direction, in particular,(?·?)(?·E). Severaldistinctive characteristics of this electric “Meissner effect” emerge in spinsuperconductors. Firstly, the variation of the electric field(?·?)(?·E) has an abruptdecrease at the boundary, which is analogous to the screen effect for electric fieldE in a uniform dielectric material. Secondly, thesuper-spin current distributes inside or near the boundaries of a spin superconductor,which depends on the magnitude of gradient for the external driven electric field.  相似文献   

6.
An expression for the permittivity tensor of a superconductor is derived within the framework of a two-fluid model of the electron subsystem. For the temperature range T ? T c , the dispersion relations for surface polaritons that propagate in the direction of the three principal crystallographic axes of a thin superconducting layer along its two interfaces with isotropic dielectrics are found. A significant effect of the superconductor anisotropy on the dispersion relations is revealed. The polarization structure of the wave field inside and outside the superconducting layer is determined.  相似文献   

7.
Josephson and quasiparticle currents in SNcNS contacts are calculated for the regimes of ballistic constriction “c”. The relation between the current and electronic densities of states in NS proximity bilayer is found. The effect of the proximity N layer on the Andreev and normal reflections of electrons at the constriction is studied. Excess current at large voltages and subharmonic structure at low bias are analyzed as a function of material parameters of N and S and transparency of the NS interface. The appearance of new series of subharmonic peaks due to two-gap structure in the density of states of proximity NS electrodes is demonstrated. The relation between excess and critical currents is analyzed. The model is relevant for SNS junctions of constricted geometry which is realized in S-2DEG-S and step-edge highT c SNS contacts.  相似文献   

8.
In this work, we investigate the thermoelectric properties of a hybrid junction realised coupling surface states of a three-dimensional topological insulator with a conventional s-wave superconductor. We focus on the ballistic devices and study the quasiparticle flow, carrying both electric and thermal currents, adopting a scattering matrix approach based on conventional Blonder–Tinkham–Klapwijk formalism. We calculate the cooling efficiency of the junction as a function of the microscopic parameters of the normal region (i.e. the chemical potential, etc.). The cooling power increases when moving from a regime of Andreev specular-reflection to a regime where Andreev retro-reflection dominates. Differently from the case of a conventional N/S interface, we can achieve efficient cooling of the normal region, without including any explicit impurity scattering at the interface, to increase normal reflection.  相似文献   

9.
Hole spin relaxation in an isolated Ge quantum dot due to interaction with phonons is investigated. Spin relaxation in this case occurs through the mechanism of the modulation of the spin-orbit interaction by lattice vibrations. According to the calculations performed, the spin relaxation time due to direct single-phonon processes for the hole ground state equals 1.4 ms in the magnetic field H = 1 T at the temperature T = 4 K. The dependence of the relaxation time on the magnetic field is described by the power function H?5. At higher temperatures, a substantial contribution to spin relaxation is made by two-phonon (Raman) processes. Because of this, the spin relaxation time decreases to nanoseconds as the temperature is raised to T = 20 K. Analysis of transition probabilities shows that the third and twelfth excited hole states, which are intermediate in two-step relaxation processes, play the main part in Raman processes.  相似文献   

10.
The superconducting order parameters in optimally doped Ba0.65K0.35Fe2As2 single crystals have been directly measured using multiple Andreev reflection effect spectroscopy of superconductor–normal metal–superconductor break-junctions. We determine two superconducting gaps, which are nodeless in the k x k y -plane of the momentum space, and resolve a substantial in-plane anisotropy of the large gap. The temperature dependences of the gaps indicate a strong coupling within the bands where ΔL develops, a weak coupling in the condensate with the small gap ΔS, and a moderate interband interaction between the two condensates. The own critical temperatures of both condensates have been estimated (under the hypotherical assumption of zero interband interaction).  相似文献   

11.
The ballistic conductance of a point contact between a strong ferromagnet and a d-wave superconductor is calculated for arbitrary spin-dependent transmission coefficients. The width of the localized Andreev state level is determined. The possibility of identifying the d-type superconductor by the shape of the voltage dependence of the conductance is analyzed for a point contact with a good metallic conduction.  相似文献   

12.
We discuss the Josephson effect for pairing states which break crystal symmetries in addition to gauge symmetry. We consider theE 1g andE 2u models for the low-temperature phase ofUPt 3, with order parameters Δ(E 1g )~p z (p x +ip y ) and Δ(E 2u )~p z (p x +ip y )2. We report calculations of Josephson critical currents, taking into account the effects of depairing at the interface. For singlet-triplet junctions the critical current is non-zero only for spin-orbit, spin-flip tunneling, and is found to be much smaller than the Ambegaokar-Baratoff value even when the spin-orbit tunneling amplitude is comparable to the spin-independent amplitude.  相似文献   

13.
Behavior of Andreev gap states in a quantum dot with Coulomb repulsion symmetricallyattached to superconducting leads is studied via the perturbation expansion in theinteraction strength. We find the exact asymptotic form of the spin-symmetric solution forthe Andreev states continuously approaching the Fermi level. We thereby derive a criticalinteraction at which the Andreev states at zero temperature merge at the Fermi energy,being the upper bound for the 0-π transition. We show that the spin-symmetricsolution becomes degenerate beyond this interaction, in the π phase, and the Andreevstates do not split unless the degeneracy is lifted. We further demonstrate that thedegeneracy of the spin-symmetric state extends also into the 0 phase in which the solutions with zero andnon-zero frequencies of the Andreev states may coexist.  相似文献   

14.
The potential energy curves (PECs) of 23 Ω states generated from the 12 electronic states (X1 Σ +, 21 Σ +, 11 Σ ?, 11 Π, 21 Π, 11 Δ, 13 Σ +, 23 Σ +, 13 Σ ?, a3 Π, 23 Π and 13 Δ) are studied for the first time. All the states correlate to the first dissociation channel of the SiBr+ cation. Of these electronic states, the 23 Σ + is the repulsive one without the spin-orbit coupling, whereas it becomes the bound one with the spin-orbit coupling added. On the one hand, without the spin-orbit coupling, the 11 Π, 21 Π and 23 Π are the rather weakly bound states, and only the 11 Π state possesses the double well; on the other hand, with the spin-orbit coupling included, the a3 Π and 11 Π states possess the double well, and the 13 Σ + and 13 Σ ? are the inverted states. The PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with the Davidson modification. Scalar relativistic correction is calculated by the third-order Douglas-Kroll Hamiltonian approximation with a cc-pVTZ-DK basis set. Core-valence correlation correction is included with a cc-pCVTZ basis set. The spin-orbit coupling is accounted for by the state interaction method with the Breit-Pauli Hamiltonian using the all-electron aug-cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of the spin-orbit coupling constant is discussed in brief. The spectroscopic parameters are evaluated for the 11 bound electronic states and the 23 bound Ω states, and are compared with available measurements. Excellent agreement has been found between the present results and the experimental data. It demonstrates that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the a3 Π 0 + and a3 Π 1 states to the X1 Σ + 0+ state are calculated for several low vibrational levels, and some brief discussion has been made.  相似文献   

15.
The critical magnetic fields H c and H c2 are measured for thin films of the isotropic superconductor NbC. It is revealed that the critical fields exhibit strong anisotropy due to the vortex-free state of the film in a magnetic field aligned parallel to its surface. The H c/H c2 ratio at 2 K exceeds 6 and increases with increasing temperature. The dependence H c(T) agrees quantitatively with the concepts of microscopic theory on the vortex-free state of a thin film of a clean superconductor in the temperature range below T c . As the electron mean free path decreases under irradiation of the film with a low dose of He+ ions, the critical field H c remains unchanged near T c but increases significantly at lower temperatures. The well-known theoretical models are used to estimate the electronic parameters and thicknesses of MgB2 films for which the specific features associated with the vortex-free state of the two-gap superconductor can manifest themselves in the temperature dependence of the critical magnetic field H c(T).  相似文献   

16.
The energies of terms with spins S = 0, 1, 2 have been found using exact diagnoalization of the multielectron Hamiltonian of a multiband pd model for the CoO6 cluster. Co (e g orbital)-O hops, which form the covalent σ bond, are shown to decrease the energy of the state (IS) with an intermediate spin (S = 1) as compared to the energy of the state (LS) with a low spin (S = 0). An analogue of the Tanabe-Sugano diagram that takes into account the covalence of the CoO6 cluster is constructed. The state with S = 1 is shown to be a ground state at certain model parameters. An increase in temperature is established to decrease the crystal field and, thus, favors the transition of the ground state from LS to IS at T = 100 K and the transition of the IS ground state to a state (HS) with a high spin (S = 2) at T = 550 K. The magnetic susceptibility of LaCoO3 is calculated with allowance for the LS, IS, and HS states and for the fact that the HS state exhibits threefold orbital degeneracy of the t 2g shell, which results in an effective orbital moment L = 1 and the importance of spin-orbit interaction. The behavior of this magnetic susceptibility agrees well with the experimental x(T) dependence of LaCoO3.  相似文献   

17.
The A-exciton series in the absorption spectra of β-ZnP2 monoclinic zinc diphosphide samples is investigated at different directions of the wave vector and different polarization states of radiation. It is shown that the oscillator strengths determined for the observed transitions are adequately described by the relationship F n n?3 characteristic of S-type exciton states. The assumption is made that the A-exciton series is associated with the partially allowed dipole transitions to nS states of the orthoexciton with Γ 2 ? (x) symmetry at m s =0. These states are mixed, to a first approximation, with nS states of the Γ 2 ? (z) singlet exciton due to the spin-orbit 2 interaction and are split off by the long-range (nonanalytical) part of the exchange interaction. The Fano antiresonances arise in the absorption spectra at resonances of the A-exciton series when the radiation vector E (or the induction vector D) has a component along the crystallographic axis c. These antiresonances are induced by the configurational interaction of discrete exciton states of the A series with the continuum of the exciton-phonon spectrum due to indirect transitions to the 1S band of the singlet exciton with phonon emission.  相似文献   

18.
The Andreev subgap conductance at 0.08–0.2 K in thin-film superconductor (aluminum)–insulator–normal metal (copper, hafnium, or aluminum with iron-sublayer-suppressed superconductivity) structures is studied. The measurements are performed in a magnetic field oriented either along the normal or in the plane of the structure. The dc current–voltage (I–U) characteristics of samples are described using a sum of the Andreev subgap current dominating in the absence of the field at bias voltages U < (0.2–0.4)Δc/e (where Δc is the energy gap of the superconductor) and the single-carrier tunneling current that predominates at large voltages. To within the measurement accuracy of 1–2%, the Andreev current corresponds to the formula \({I_n} + {I_s} = {K_n}\tanh \left( {{{eU} \mathord{\left/ {\vphantom {{eU} {2k{T_{eff}}}}} \right. \kern-\nulldelimiterspace} {2k{T_{eff}}}}} \right) + {K_s}{{\left( {{{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} \right)} \mathord{\left/ {\vphantom {{\left( {{{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} \right)} {\sqrt {1 - {{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - {{eU} \mathord{\left/ {\vphantom {{eU} {{\Delta _c}}}} \right. \kern-\nulldelimiterspace} {{\Delta _c}}}} }}\) following from a theory that takes into account mesoscopic phenomena with properly selected effective temperature T eff and the temperature- and fieldindependent parameters K n and K s (characterizing the diffusion of electrons in the normal metal and superconductor, respectively). The experimental value of K n agrees in order of magnitude with the theoretical prediction, while K s is several dozen times larger than the theoretical value. The values of T eff in the absence of the field for the structures with copper and hafnium are close to the sample temperature, while the value for aluminum with an iron sublayer is several times greater than this temperature. For the structure with copper at T = 0.08–0.1 K in the magnetic field B|| = 200–300 G oriented in the plane of the sample, the effective temperature T eff increases to 0.4 K, while that in the perpendicular (normal) field B ≈ 30 G increases to 0.17 K. In large fields, the Andreev conductance cannot be reliably recognized against the background of single- carrier tunneling current. In the structures with hafnium and in those with aluminum on an iron sublayer, the influence of the magnetic field is not observed.  相似文献   

19.
Features of a phase transition between 0 and π states in superconductor/ferromagnet/superconductor (SFS) Josephson structures with thin superconducting layers and a ferromagnetic barrier are studied experimentally and theoretically. The dependence of the critical temperature Tc of a transition of the hybrid structure to a superconducting state on the thickness of superconducting layers ds is analyzed by a local method involving measurements of the nonlinear microwave response of the system by a near-field probe. An anomalous increase in the measured temperature Tc at the reduction of the thickness ds is detected and is attributed to the 0-π transition.  相似文献   

20.
The effect of a spiral spin structure on superconducting (SC) pairing in a three-band Hubbard model related to Sr2RuO4 is analyzed in the mean-field approximation. Such a structure with incommensurate vector Q=2π (1/3, 1/3) is the simplest one that removes the nesting instability of α and β bands. It is assumed that there is an intralayer pairing interaction between two types of neighbor sites, those with attraction in a singlet channel and with attraction in both two-singlet and triplet channels. In both cases, a mixed singlet-triplet SC order is observed in the γ band: a d-wave singlet order is accompanied by the formation of p-wave triplet pairs (k,-k-Q)? and (k,?k+Q)? with large total momenta ?Q and the spin projections ±1 onto an axis perpendicular to the spin rotation plane of the spiral spin structure. Both the SC and normal states are states with broken time-reversal symmetry. In contradiction to the experiment, the models give different scales of T c for the γ band and for α and β bands. This fact shows that the models with intralayer interactions or with the spin structure assumed are insufficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号