首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

2.
In this paper, the Czochralski growth, absorption spectra, and photoluminescence spectra of Nd:GdVO4 crystals are studied. From its absorption spectra, Nd:GdVO4 is found to exhibit an anisotropic optical absorption effect, and its effective Judd-Ofelt parameters are calculated: Ω2=10.281×10−20 cm2, Ω4=5.426×10−20 cm2 and Ω6=9.943×10−20 cm2. By these parameters, the absorption oscillator strengths, emission oscillator strengths, transition probabilities, fluorescence branch ratios, energy lifetimes, and integrated emission cross-sections are also derived. The photoluminescence spectra of Nd:GdVO4 crystal consist of a wide emission band of host and the characteristic emission bands of Nd3+. Based on the excitation spectrum, both the two evident peaks locating at 345 and 371 nm are ascribed to the characteristic excitation of Nd3+, and an energy transfer from the host to its doping Nd3+ ions is indicated.  相似文献   

3.
The temperature-dependent luminescence of Eu:Ca2Gd8Si6O26 and its decay pathways are investigated in order to assess the utility of the material as a thermometric phosphor. Non-radiative decays are found to compete with radiative processes even at room temperature. A decay pathway involving decay through charge-transfer states is proposed based on the decay profiles of emissions from 5D1 and 5D0 levels and on the temperature sensitivity of the spectra as observed after excitation by several wavelengths. The implications of this on solid-state lighting are also discussed.  相似文献   

4.
In this paper, the Ca2SnO4:Eu3+ phosphor was prepared by low-temperature sol-gel method. The influence of calcined temperature and time on structure of Ca2SnO4:Eu3+ was investigated by using X-ray powder diffraction (XRD). The experimental results show that the dried gel was crystallized to the pure orthorhombic phase after calcination at 900 °C in air for 6 h. These phosphors have displayed bright red color under a UV source. The richness of the red color has been verified by determining their color coordination from the CIE standard charts, and this red emission has been assigned to 5D07F2 electric dipole transition at 616 and 620 nm. The excellent luminescence properties make it possible as a good candidate for plasma display panel (PDP) application.  相似文献   

5.
The crystalline structure and photoluminescence (PL) properties of europium-doped cerium dioxide synthesized by the solid-state reaction method were analyzed. CeO2:Eu3+ phosphor powders exhibit the pure cubic fluorite phase up to 10 mol% doping concentration of Eu3+. With indirect excitation of CeO2 host at 373 nm, the PL intensity quickly increases with increasing Eu3+ concentration, up to about 1 mol%, and then decreases indicating the concentration quenching. While with direct excitation (467 nm), much more stronger PL emissions, especially the electric dipole emission 5D0-7F2 at 612 nm, are observed and no concentration quenching occurs up to 10 mol% doping concentration of Eu3+. The nature of this behavior and the cause of the concentration quenching were discussed.  相似文献   

6.
ZnO/ZnGa2O4 composite layers were synthesized by simple thermal oxidation of ZnS substrates with gallium in the air. The continuous-wave and time-resolved photoluminescence measurements for the composites were performed at room temperature. It is found that the visible deep level emission from ZnO in ZnO/ZnGa2O4 composite layer was almost suppressed. In addition, the UV emission with long lifetime was also observed in comparison with that of pure ZnO layer without ZnGa2O4.  相似文献   

7.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

8.
In this paper, we present the photoluminescence properties of Pr3+-, Sm3+- and Dy3+-doped germanate glasses and glass ceramics. From the X-ray diffraction measurement, the host glass structure was determined. These glasses have shown strong absorption bands in the near-infrared (NIR) region. Compared to Pr3+-, Sm3+- and Dy3+-doped glasses, their respective glass ceramics have shown stronger emissions due to the Ba2TiGe2O8 crystalline phase. For Pr3+-doped glass and glass ceramic, emission bands centered at 530 nm (3P03H5), 614 nm (3P03H6), 647 nm (3P03F2) and 686 nm (3P03F3) have been observed with 485 nm (3H43P0) excitation wavelength. Of them, 647 nm (3P03F2) has shown bright red emission. Emission bands of 4G5/26H5/2 (565 nm), 4G5/26H7/2 (602 nm) and 4G5/26H9/2 (648 nm) for the Sm3+:glass and glass ceramic, with excitation at 6H5/24F7/2 (405 nm) have been recorded. Of them, 4G5/26H7/2 (602 nm) has shown a bright orange emission. With regard to the Dy3+:glass and glass ceramic, a bright fluorescent yellow emission at 577 nm (4F9/26H13/2) has been observed, apart from 4F9/26H11/2 (667 nm) emission transition with an excitation at 454 nm (6H15/24I15/2) wavelength. The stimulated emission cross-sections of all the emission bands of Pr3+, Sm3+ and Dy3+:glasses and glass ceramics have been computed based on their measured full-width at half-maxima (FWHM, Δλ) and lifetimes (τm).  相似文献   

9.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

10.
The luminescence of LaY3+ and ScY3+ and ScAl3+ centers created by lanthanum and scandium ions at Y3+ and Al3+ cation sites of YAlO3 perovskite lattice was investigated. The features of emission of excitons localized at the mentioned centers in YAlO3:La and YAlO3:Sc single-crystalline films were analyzed by means of time-resolved emission spectroscopy and luminescence decay kinetics measurements under excitation by synchrotron radiation at 9 and 300 K.  相似文献   

11.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

12.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

13.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

14.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

15.
The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd3+:KGd(WO4)2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd3+:KGd(WO4)2 crystal was discussed.  相似文献   

16.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

17.
The Tm3+/Er3+:NaGd(MoO4)2 crystal with dimensions of Φ22×30 mm3 was grown by Czochralski method. Polarized spectra and fluorescence lifetime for the 4I13/2(Er3+)→4I15/2(Er3+) transition at room temperature were investigated. Based on the Judd-Ofelt theory, the spontaneous transition probabilities, the fluorescent branching ratios and the radiative lifetimes were calculated. The fluorescence lifetime was measured to be 1.81 ms. The detailed excited-transition mechanism with 800 nm radiation is also discussed.  相似文献   

18.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

19.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

20.
Highly efficient transparent Zn2SiO4:Mn2+ film phosphors on quartz substrates were deposited by the thermal diffusion of sputtered ZnO:Mn film. They show a textured structure with some preferred orientations. Our film phosphor shows, for the best photoluminescence (PL) brightness, a green PL brightness of about 20% of a commercial Zn2SiO4:Mn2+ powder phosphor screen. The film shows a high transmittance of more than 10% at the red-color region. The excellence in PL brightness and transmittance can be explained in terms of the textured crystal growth with a continuous gradient of Zn2SiO4: Mn2+ crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号