首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Spectral characteristics of methyl 2-hydroxynicotinate (MEHNA) have been studied using absorption, fluorescence excitation and fluorescence spectroscopy, as well as, using single photon counting nanosecond spectrofluorimeter. MEHNA is present as enol in less polar solvents and keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to phototautomer, formed by excited state intramolecular proton transfer (ESIPT), whereas fluorescence is only observed from keto form in polar solvents. In aqueous and polar solvents monocation (MC) is formed by protonating the exo carbonyl oxygen atom in the ground state (S0) and in the first excited singlet state (S1), MC is obtained by protonating carbonyl oxygen atom of the ester. It is formed by ESIPT from exo carbonyl proton to carbonyl oxygen atom of the ester. Dication is formed by protonating both the oxygen atoms. Two kinds of monoanions formed by deprotonating phenolic proton or >N-H proton of keto suggest the presence of enol and keto in aqueous solution. In cyclohexane MC is formed by protonating carbonyl oxygen in both S0 and S1 states. The electronic structure calculations were performed on each species using semi-empirical quantum mechanical AM1 method and density functional theory B3LYP with 6-31G** basis set using Gaussian 98 program, along with potential energy mapping, to characterize the particular species.  相似文献   

2.
运用密度泛函(DFT)和含时密度泛函(TD DFT)理论方法研究了在2-(2-羟基苯基)苯并噻唑(HBT)苯环羟基的邻位或对位分别引入羟基和醛基后的衍生物分子内质子转移过程,考察了取代基的电子效应及取代位置对分子内氢键和质子转移反应的影响,模拟计算了各分子的IR振动光谱和电子光谱.研究发现,HBT及其衍生物分子可以形成分子内氢键,且激发态时氢键增强.基态时以醇式构型稳定存在,激发态时酮式结构为优势构象.分子的最大吸收峰和发射峰主要源于电子从前线分子轨道HOMO到LUMO之间的跃迁.基态分子内质子转移需要越过较高的能垒因而难以发生,而激发态时只需越过较低能垒就很容易发生激发态分子内质子转移.取代基的电子效应和取代位置对HBT分子氢键强度、互变异构体的相对稳定性、电子光谱及质子转移反应的能垒均有一定影响.  相似文献   

3.
Spectroscopic investigations on excited state proton transfer of a new dibenzimidazolo diimine sensor (DDS) were reported by Goswami et al. recently. In our present work, based on the time‐dependent density functional theory (TDDFT), the excited‐state intramolecular proton transfer (ESIPT) mechanism of DDS is studied theoretically. Our calculated results reproduced absorption and fluorescence emission spectra of the previous experiment, which verifies that the TDDFT method we adopted is reasonable and effective. The calculated dominating bond lengths and bond angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared vibrational spectra. Further, hydrogen bonding strengthening manifests the tendency of ESIPT process. The calculated frontier molecular orbitals further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O–H coordinate, the potential energy barrier of about 5.02 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 0.195 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
An intramolecular excited charge transfer (CT) analysis of imidazole derivatives has been made. The determined electronic transition dipole moments has been used to estimate the electronic coupling interactions between the excited charge transfer singlet state (1CT) and the ground state (S0) or the locally excited state (1LE). The properties of excited 1CT state imidazole derivatives have been exploited by the significant contribution of the electronic coupling interactions. The excited state intramolecular proton transfer (ESIPT) analysis has also been discussed.  相似文献   

5.
Li H  Niu L  Xu X  Zhang S  Gao F 《Journal of fluorescence》2011,21(4):1721-1728
This article presents a comprehensive therotical investigation of excited state intramolecular proton transfer (ESIPT) for some newly-designed diphenylethylene derivatives containing 2-(2-hydroxy-phenyl)-benzotriazole moiety with various substituted groups. The calculation shows the structural parameters and Mulliken charges of phototautomers enol (E) and keto (K) of these compounds exhibit no or tiny changes from S0 to S1. The calculated results suggest that HOMO and LUMO + 1 of the compounds displays excellent overlapping nature, and thus the absorption and emission could be from the electron transition of HOMO→LUMO + 1. The electron density distribution in the frontier orbital of E and K are influenced remarkably by various substituted groups in S0 and S1 states. Electron density distribution deficiency in 2-(2-hydroxy-phenyl)-benzotriazole part is observed in L + 1 for these derivatives. The calculation also suggests the potential energy curves of ESIPT are shown to be a strong relationship with electron donor-acceptor groups. The absorption spectra, normal emission spectra and ESIPT spectra of the derivatives were also calculated.  相似文献   

6.
In the present work, using density functional theory and time‐dependent density functional theory methods, we investigated and presented the excited‐state intramolecular proton transfer (ESIPT) mechanisms of a novel Compound 1 theoretically. Analyses of electrostatic potential surfaces and reduced density gradient (RDG) versus sign(λ2)ρ, we confirm the existence of intramolecular hydrogen bond O1‐H2···N3 for Compound 1 in the S0 state. Comparing the primary structural variations of Compound 1 involved in the intramolecular hydrogen bond, we find that O1‐H2···N3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Concomitantly, infrared (IR) vibrational spectra analyses further verify the stability of hydrogen bond. In addition, the role of charge transfer interaction has been addressed under the frontier molecular orbitals, which depicts the nature of electronical excited state and supports the ESIPT reaction. The theoretically scanned and optimized potential energy curves according to variational O1‐H2 coordinate demonstrate that the proton transfer process should occur spontaneously in the S1 state. It further explains why the emission peak of Compound 1‐enol was not reported in previous experiment. This work not only presents the ESIPT mechanism of Compound 1 but also promotes the understanding of this kind of molecules for further applications in future.  相似文献   

7.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The time-dependent density functional theory (TDDFT) method was carried out to investigate the excited state intramolecular proton transfer (ESIPT) process of 3-hydroxy-2-(pyridin-2-yl)-4H-chromen-4-one (1a). 1a has two tautomeric forms: one is 1a(O), which is induced by intramolecular hydrogen bond O-H?O=C, and the other one is 1a(N), which is caused by intramolecular hydrogen bond O-H?N. From excited state to tautomer excited state coming from ESIPT, the hydroxyl hydrogen breaks away and the dissociated hydrogen adsorbed on pyridinic nitrogen or carbonyl oxygen formed new intramolecular HB and the corresponding bond length and bond angle varied greatly. In comparison, a similar process of proton transfer for 1a(N)H+ protonated 1a(N) from ground state to excited state was obtained. This detailed proton transfer mechanism was provided by molecular orbitals analysis and it may be applied to molecular switch and organic Lewis acid/base. We investigated the excited state proton transfer mechanism of the four molecules through the theoretical method for the first time and gave unambiguous geometry of excited state.  相似文献   

9.
通过稳态光谱实验和量子化学计算相结合,研究了黄芩素激发态质子转移耦合电荷转移的反应. 实验和计算中S1态吸收峰的缺失表明S1态是暗态. S1暗态导致在实验中观察不到黄芩素在乙醇溶液中的荧光峰,且固体的荧光峰很弱. 黄芩素分子的前线分子轨道和电荷差异密度表明S1态是电荷转移态,然而S2态是局域激发态. 计算的黄芩素分子的势能曲线在激发态只有一个稳定点,这表明了黄芩素激发态分子内质子转移的过程是一个无  相似文献   

10.
通过考察2-羟基-1-萘甲醛半碳酰腙(HNLSC)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了HNLSC分子在不同溶剂及酸、碱条件下的不同构型,证实了HNLSC具有典型的ESIPT特性。在非极性溶剂中分子主要以分子内氢键的闭式构型存在,这种闭式构型使分子具有ESIPT特性,在环己烷溶剂和高酸度极性溶剂中分子均表现出~415nm的正常荧光和~435nm处的反常ESIPT荧光。在极性质子溶剂中,因溶质和溶剂之间形成了分子间的氢键以及进一步去质子化,HNLSC形成了基态的溶剂化开式构型和离子构型,在吸收光谱中表现出~395nm的离子构型特征吸收。开式构型和离子构型阻断了分子内质子转移途径,因而在荧光光谱中仅表现出一个特征峰。实验进一步通过三乙胺和稀硫酸调节溶液体系的极性和酸度环境,证明在不同溶剂极性和酸度环境下,HNLSC分子不仅存在萘环上羟基变化引起的多种互变异构体间的转化平衡,同时存在—CHN—NH—CO—NH2结构域的烯醇式和酮式结构的相互转化。  相似文献   

11.
A set of π-expanded imidazole derivatives employing excited state intramolecular proton transfer (ESIPT) was designed and synthesized. The relationship between the structure and photophysical properties were thoroughly elucidated by comparing with the analogue blocked with ESIPT functionality. The compound possessing an acidic NH function as part of an intramolecular hydrogen bond system has much higher fluorescence quantum yield and Stokes shift and the π-expansion strongly influences the optical properties. The occurrence of ESIPT for imidazole tosylamide derivatives were less affected by the hydrogen-bonding ability of the solvents compared to the unprotected amine. The low pKa values for the monocation ? neutral equilibrium indicate the presence of intramolecular hydrogen bonding between the amino proton and tertiary nitrogen atom.  相似文献   

12.
In this work, based on the density functional theory and time‐dependent density functional theory methods, the properties of the 2 intramolecular hydrogen bonds (O1‐H2···N3 and O4‐H5···N6) of a new photochemical sensor 4‐(3‐(benzo[d]thiazol‐2‐yl)‐5‐tert‐butyl‐4‐hydroxybenzyl)‐2‐(benzo[d]thiazol‐2‐yl)‐6‐tert‐butyl phenol (Bis‐HPBT) have been investigated in detail. The calculated dominating bond lengths and bond angles about these 2 hydrogen bonds (O1‐H2···N3 and O4‐H5···N6) demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. In addition, the variations of hydrogen bonds of Bis‐HPBT have been also testified based on infrared vibrational spectra. Our theoretical results reproduced absorption and emission spectra of the experiment, which verifies that the theoretical level we used is reasonable and effective in this work. Further, hydrogen bonding strengthening manifests the tendency of excited state intramolecular proton transfer (ESIPT) process. Frontier molecular orbitals depict the nature of electronically excited state and support the ESIPT reaction. According to the calculated results of potential energy curves along stepwise and synergetic O1‐H2 and O4‐H5 coordinates, the potential energy barrier of approximately 1.399 kcal/mol is discovered in the S1 state, which supports the single ESIPT process along with 1 hydrogen bond of Bis‐HPBT. In other words, the proton transfer reaction can be facilitated based on the electronic excitation effectively. In turn, through the process of radiative transition, the proton‐transfer Bis‐HPBT‐SPT form regresses to the ground state with the fluorescence of 539 nm.  相似文献   

13.
Herein we have employed the MS-CASPT2//CASSCF method to study the S1 excited-state intramolecular proton transfers (ESIPTs) of recently synthesized ortho-hydroxyl GFP core chromophores, i.e. OHIM, CHBDI, and MHBID, and their excited-state relaxation pathways. We have found that in OHIM and CHBDI, the ESIPT process is associated with small barriers of 3.4 and 4.2 kcal/mol; while, in MHBDI, it becomes essentially barrierless. Moreover, we have found two main S1 excited-state radiationless channels. In the first one, the enol S1 species decays to the S0 state via the enol S1/S0 conical intersection after overcoming considerable barriers of 7.0 and 7.7 kcal/mol in OHIM and CHBDI (however, in MHBDI, it is nearly barrierless). In the second one, the keto S1 species is first generated through the ESIPT event; then, it is de-excited into the S0 state in the vicinity of the keto S1/S0 conical intersection. These energetically allowed excited-state decay channels rationalize experimentally observed ultralow fluorescence quantum yields. The insights gained from the present work may help to guide the design of new ortho-hydroxyl GFP core chromophores with improved fluorescence emission and brightness.  相似文献   

14.
ABSTRACT

In this contribution, the photophysical properties of two excited state intramolecular proton transfer (ESIPT) fluorophores of 2,6-dibenzothiazolyl-4-methylphenol (I) and 2-benzothiazolyl-6-(2-(benzothiazolyl)vinyl)-4-methylphenol (II) were studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods at the PBE0 theoretical level. To probe into the origin of the absorption and emission bands observed experimentally, the absorption and emission spectra of I and II were simulated by the TD-PBE0/6-311?+?G(d,p) calculations. In addition, the photo-induced proton enol–keto tautomerization of the two targeted molecules was also explored. The present studies indicate that a good agreement is found between theoretical predictions and experimental data. Moreover, both of these molecules can undergo an ultrafast ESIPT process, which should be responsible for the single proton-transfer tautomer emission.  相似文献   

15.
Experimental and theoretical evaluations have proven that very low fluorescence quantum yields of azlactones in solution are not caused by an efficient inter system crossing from S1*(ππ) to T*(nπ) states, but rather from solvation and steric effects, that result in non-planarity of the molecular system. High fluorescence quantum yields in the solid state are attributed to the planarity of the azlactone molecule upon packing into the crystal lattice. Supporting evidence was found upon observation of the excited state proton transfer (ESIPT) bands of fluorescence emissions of o-hydroxyarylidene derivatives. The photoinstability of azlactones in liquid states are attributed to photochemical E-Z isomerization and cleavage of the hetero ring α to the carbonyl group.  相似文献   

16.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

17.
In the present work, we investigate a new chromophore (ie, quercetin) (Simkovitch et al J Phys Chem B 119 [2015] 10244) about its complex excited‐state intramolecular proton transfer (ESIPT) process based on density functional theory and time‐dependent density functional theory methods. On the basis of the calculation of electron density ρ( r ) and Laplacian ?2ρ( r ) at the bond critical point using atoms‐in‐molecule theory, the intramolecular hydrogen bonds (O1‐H2?O5 and O3‐H4?O5) have been supported to be formed in the S0 state. Comparing the prime structural variations of quercetin involved in its 2 intramolecular hydrogen bonds, we find that these 2 hydrogen bonds should be strengthened in the S1 state, which is a fundamental precondition for facilitating the ESIPT process. Concomitantly, infrared vibrational spectra analysis further verifies this viewpoint. In good agreement with previous experimental spectra results, we find that quercetin reveals 2 kinds of excited‐state structures (quercetin* and quercetin‐PT1*) in the S1 state. Frontier molecular orbitals depict the nature of electronically excited state and support the ESIPT reaction. Our scanned potential energy curves according to variational O1‐H2 and O3‐H4 coordinates demonstrate that the proton transfer process should be more likely to occur in the S1 state via hydrogen bond wire O1‐H2?O5 rather than O3‐H4?O5 because of the lower potential energy barrier 2.3 kcal/mol. Our present work explains previous experimental result and makes up the deficiency of mechanism in previous experiment. In the end, we make a reasonable assignment for ESIPT process of quercetin.  相似文献   

18.
The electronic transport properties of the salicylideneanilines-based molecular optical switch are investigated using a nonequilibrium Green's function formalism combined with first-principles density functional theory. The molecule that comprises the switch can convert between the enol and keto tautomeric forms upon photoinduced excited state hydrogen transfer in the molecular bridge. Theoretical results show that the current through the enol form is significantly larger than that through the keto form, which realize the on and off states of the molecular switch. The physical origin of the switching behaviour is interpreted based on the spatial distributions of molecular orbitals and the HOMO-LUMO gap. Furthermore the effect of the donor/acceptor substituent on the electronic transport through the molecular device is also discussed in detail. The switching performance can be improved to some extent through the acceptor substituent.  相似文献   

19.
We theoretically investigate the excited state behaviors of the novel fluorophore tetraphenylethene‐2‐(2′‐hydroxyphenyl)benzothiazole (TPE‐HBT), which was designed based on the intersection of TPE and HBT, using density functional theory and time‐dependent density functional theory methods. Compared with previous experimental results about fluorescence peaks, our calculated results are in good agreement with experimental data, which further confirms that the theoretical level we used is reasonable. Furthermore, our results confirm that the excited state intramolecular proton transfer (ESIPT) process happens upon photoexcitation, which is distinctly monitored by the infrared spectra and the potential energy curves. In addition, the calculation of highest occupied molecular orbital and lowest unoccupied molecular orbital reveals that the electron density change of proton acceptor because of the intramolecular charge transfer (ICT) process in the S1 state induces the ESIPT. Moreover, the transition density matrix is worked out to facilitate deeper insight into the ESIPT coupled ICT process. It is hoped that the present work not only elaborates the ESIPT coupled ICT phenomenon and corresponding mechanisms for the TPE‐HBT but also may be helpful to design and develop new materials and applications involved in TPE‐HBT systems in future.  相似文献   

20.
观测了2-(2′-羟基苯基)苯并噻唑(HBT)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了溶剂极性对HBT发生激发态分子内质子转移(ESWT)影响的机制。吸收光谱表明在常态条件下,HBT在各种溶剂中都以烯醇式构型和酮式构型共同存在,但以烯醇式构型占绝大多数。荧光光谱表明在纯环己烷溶剂中,HBT被紫外光激发时,绝大多数烯醇式构型发生ESIPPT转变为酮式构型,分子的ESIPT效率最大。在含有乙醇的极性溶剂中,HBT烯醇式会形成溶剂化的烯醇式构型,阻碍分子发生ESIPT反应。溶剂中乙醇含量愈多极性愈强,溶剂化烯醇式的成份就愈多,HBT的ESIPT效率就愈低。以400nm光激发HBT溶液时,在510nm处发现酮式构型荧光,从而确认了400nm处的弱吸收是酮式构型的吸收;且在436和456nm处还有新的荧光峰,分析其可能来源于酮式构型去质子化阴离子的发射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号