首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is devoted to investigation of the processes of excitation energy transfer between the host cations (Tb3+ ions) and the activators (Ce3+ and Eu3+ ions) in single-crystalline films of Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet which is considered as a promising luminescent material for the conversion of LED's radiation. The cascade process of excitation energy transfer is shown to be realized in TbAG:Ce,Eu: (i) from Tb3+ ions to Ce3+ and Eu3+ ions; (ii) from Ce3+ ions to Eu3+ ions by means of dipole-dipole interaction and through Tb3+ ion sublattice.  相似文献   

2.
The site-selective and time-resolved fluorescence laser spectroscopy and kinetic measurements with high spectral and nanosecond temporal resolution was applied to analyze the high-energy wing of the M and N absorption bands of the 4I9/2(1)→4G5/2(1) crystal-field (CF) transition in a CaF2:Nd3+ (0.6 wt%) crystal at 4.2 K. It was found that at helium temperatures the dynamically split spectral line assigned as the 4I9/2(1)→4G5/2(1) (CF) transition of coherently coupled Nd3+ ions in the pair M- and quartet N-centers of CaF2:Nd3+ (0.6 wt%) is inhomogeneously broadened. It consists of the pair M- and quartet N-centers with at least 0.1 A variation of the positions of the fluorescence-excitation spectral lines registered at the 4F3/2(1)→4I9/2(1) CF transition. Small fluorescence-lifetimes variation of the 4F3/2 and 4D3/2 levels from the small variation of the distances R between Nd3+ ions in the pair is found. At least 2.7% variation of the value of the Nd-Nd distance R in the pair M-center was determined from the lifetime variation of the 4F3/2 manifold with the assumption of a dipole-dipole interaction between the ions in the pair.The energy transfer up-conversion process responsible for the UV fluorescence observed when pumping the 4I9/2(1)→4G5/2(1) transition has been determined.  相似文献   

3.
We report on dynamics of excitons in CdxZn1−xTe/ZnTe quantum dots (QDs) and present information of excitonic transport and recombination. Due to different growth methods, samples with different QD's densities were obtained. Time-resolved measurements reveal three decay mechanisms: (i) radiative recombination of excitons in the individual QDs; (ii) thermally activated escape of excitons and (iii) escape due to tunneling (hopping). In the high QD-density samples the hopping (rHB=2700 ns−1) is two orders of magnitude more efficient than in the low QD-density samples (rHB=33 ns−1). Radiative recombination rates are similar in both types of samples, rR=1-1.3 ns−1. Due to the good radiative to nonradiative recombination ratio, the low-density QDs can be a potential source of entangled photon pairs.  相似文献   

4.
Polarized Raman scattering spectra of distorted elpasolites Cs2NaAlF6 with a Cr3+ content of 0.1, 0.5 and 3.0 at% have been studied at both room temperature and 16 K. A shoulder located near the very intense band assigned to the AlF63− A1g mode indicates that the guest ion causes only small perturbations to the host lattice. Magnetic susceptibility measurements performed on the 0.1, 0.5, 3, 10 and 50 at% samples show that for particular concentrations the Cr3+ ions are not isolated, but participate to inter and/or intra-cluster magnetic exchange.  相似文献   

5.
At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce3+-doped Lu3Al5O12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb2+-based centres were identified. The processes of energy transfer from the host lattice to Pb2+ and Ce3+ ions and from Pb2+ to Ce3+ ions were investigated. Competition between Pb2+ and Ce3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb2+ centres with the 3.6 eV absorption band of Ce3+ centres, an effective nonradiative energy transfer from Pb2+ ions to Ce3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce3+ centres and decrease of the Ce3+-related luminescence intensity.  相似文献   

6.
Ultrafast light-induced insulator-metal phase transitions (PT) in VO2 thin films was studied with use of a pump-probe technique. The theoretical and experimental study of PT kinetics shows that the PT could be realized via an intermediate state. The relaxation processes after optical pumping are dependent on pump energy. The excitonic controlled model for such type of PT is proposed. The main channel for the ultrafast light-induced PT is the resonant transition between excited states of correlated vibronic Wannier-Mott excitons (WME) in insulator phase and the unoccupied excited states in metallic phase. During this process an equilibrium local distortion occurred. According to the proposed model the experimental observation of the drastic temperature- and pump power- dependent relaxation processes could be interpreted.  相似文献   

7.
A luminescent mechanism was constructed for the broad band emission spectra of the X1 phase of the Y2SiO5:Ce phosphor powder. Four Gaussian peaks fit to the cathodoluminescent (CL) and photoluminescent (PL) spectra were attributed to the two different sites (A1 and A2) of the Ce3+ ion in the host matrix and the difference in orientation of the neighbour ions in the complex crystal structure. Each Ce3+ site gives rise to transitions from the 5d to the two (therefore two peaks) 4f energy levels (2F5/2 and 2F7/2 due to crystal field splitting). Energy transfer from other defect levels in the matrix was also observed.  相似文献   

8.
A phenomenological kinetic equation is proposed to describe a process of a hexavacancy (V6) orientation in silicon samples. The orientation kinetics of V6 was investigated under a uniaxial compressional stress along the [111] axis of the crystal. Parameters appeared in the matrix equation of the orientation kinetics of V6 as functions of pressure and annealing temperature were obtained and their values were estimated. In the case of the inequivalent V6 centers, the pressure dependence of the difference in the magnitude of their binding energies was determined.  相似文献   

9.
Using third harmonics of LiF:F2+ tunable color center laser excitation and selective fluorescence detection the temperature and concentration dependencies of fluorescence decay curves of the high-lying manifold of the Nd3+ ion were measured in CeF3 crystals. As a result the temperature dependence of energy transfer kinetics from the manifold of the Nd3+ donor ions to the manifold of the acceptor Ce3+ ions in the ordered practically 100% filled crystal lattice was determined for 13-. Based on the temperature dependence the mechanisms and the channels of the Nd→Ce nonradiative energy transfer have been recognized. The net growth of the resonance Nd→Ce energy transfer rate in the temperature range from 25 to is found to be almost 3 orders of magnitude from 9.0×104 to .In a crystal a significant contribution of the Nd→Nd resonance energy transfer to the manifold quenching is found for 20- and its channel and mechanism are suggested.Discussion of the possibility of subpicosecond and picosecond nonradiative energy transfer in rare-earth doped laser crystals is provided.  相似文献   

10.
Nanosized ZnGa2O4:Cr3+ powder is synthesized through hydrothermal method. The average particle size is 20 nm and they are spherical in shape. The excitation band from the charge transfer between Cr3+-O2− shows a blueshift behavior due to quantum confinement effect. X-ray diffraction pattern, Fourier transform-infrared spectrum, and electron paramagnetic resonance signal indicate that nanosized ZnGa2O4:Cr3+ phosphor shows many defect-related energy states and heavy lattice distortion in comparison with bulk ZnGa2O4:Cr3+ phosphor. Many defect states result in more nonradiative loss and shorter decay time.  相似文献   

11.
Transient optical Kerr effect of liquids C2H4Cl2 and C2H4Br2 is investigated, for the first time to our knowledge, with a femtosecond (fs) probe laser delayed with respect to a coherent fs pump laser. Coherent coupling and electronic Kerr signals are observed around zero delay when pump and probe overlap. Persisting after the pump-probe overlap are Kerr signals arising from the torsional and other intramolecular vibrations of the trans and gauche conformations; Kerr signals arising from the intermolecular motion are also observed. Vibrational quantum interference is only observed in liquid C2H4Br2 and the related beats data are fitted with the torsional vibrations, 91 cm−1 (gauche) and 132 cm−1 (trans), and the CCBr angle-bending vibrations, 231 cm−1 (gauche) and 190 cm−1 (trans), with dephasing times, 0.45 ps, 0.45 ps, 2 ps, and 1.5 ps, respectively. These vibrational frequencies agree with those obtained in the frequency-domain. That no vibrational mode is observed for C2H4Cl2 might be attributed to ineffective Raman-pumping. Kerr signals observed after the pump-probe overlap are Fourier transformed to give the spectra of the intermolecular motion and the vibrational spectrum, which agrees with the one observed in the infrared absorption and/or Raman scattering heretofore.  相似文献   

12.
We report the results of electrical resistance measurements at high pressures on Cs2MoS4 and KTbP2Se6. The results of high pressure X-ray diffraction study of Cs2MoS4 are also presented. Interestingly, in the case of Cs2MoS4 the resistance vs. pressure follows the behavior of the absorption edge vs. pressure obtained from our optical measurements lending further support to a direct-indirect band crossing. In the case of KTbP2Se6,the phase transition at about 9.2 GPa is reflected in a sharp drop of the resistance. In addition we report the pressure dependence of the lattice constants as well as the equation of state of Cs2MoS4.  相似文献   

13.
When certain trivalent rare-earth ions (Ln's) are co-doped in CaGa2S4:Mn2+ as sensitizers, the Mn red emission of the compound is strikingly enhanced. In this work, efficiency of each lanthanide is studied. The best efficiencies are achieved with La3+-, Pr3+-, and Tb3+- co-doped compounds, for each of which the effects of concentrations of the co-doped ions on the Mn2+ emission are investigated. The energy-transfer mechanisms and the location of electronic energy levels of both the trivalent and the divalent lanthanides in the energy band gap of the host material are discussed. Depending on Ln's, charge transfer or cross-relaxation should be taken into account.  相似文献   

14.
The temperature-dependent luminescence of Eu:Ca2Gd8Si6O26 and its decay pathways are investigated in order to assess the utility of the material as a thermometric phosphor. Non-radiative decays are found to compete with radiative processes even at room temperature. A decay pathway involving decay through charge-transfer states is proposed based on the decay profiles of emissions from 5D1 and 5D0 levels and on the temperature sensitivity of the spectra as observed after excitation by several wavelengths. The implications of this on solid-state lighting are also discussed.  相似文献   

15.
16.
The photoluminescent (PL) emission and excitation behaviour of green-emitting CaAl2S4:Eu2+ powder phosphor is reported in detail. CaAl2S4:Eu2+ emission provides good CIE colour coordinates (x=0.141; y=0.721) for the green component in display applications. Powder with a dopant concentration of 8.5 mol% shows the highest luminescence efficiency. Temperature dependence of the radiative properties, such as luminescence intensity and decay time, was investigated. In particular, the Stokes shift, the mean phonon energy, the redshift, the energy of the f→d and d→f transition and the crystal field splitting of the CaAl2S4:Eu2+ emission were determined. The thermal quenching of the emission was examined.  相似文献   

17.
Luminescent properties of doped ZrO2:Er3+ and codoped ZrO2:Yb3+-Er3+ nanocrystals with average size ∼54 nm were analyzed as a function of non-ionic surfactant (Pluronic F-127) concentration. Surfactant and non-surfactant samples were prepared by the sol-gel micelle process with hydrothermal aging and annealed at 1000 °C for 5 h. The introduction of the surfactant reduces the presence of impurities such as OH and CO2 on both samples, and increments the tetragonal phase for codoped nanocrystals. It induces an increment larger than 90% and 70% for doped and codoped, respectively, for an optimum molar ratio of 0.0082. The observed enlargement of fluorescence decay time is partly the result of the nanosize effect but is dominated by the reduction of impurities attached on the nanocrystalline surface.  相似文献   

18.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

19.
The η-Mo4O11 compound is a layered two-dimensional (2D) metallic system whose reduced dimensionality originates non-linear properties as charge density wave (CDW) instabilities. We report on synchrotron radiation angle resolved photoemission spectroscopy (ARPES) measurements in order to obtain a detailed picture of the electronic structure of this material. The symmetry of the states near the Fermi level (EF) has been discussed in relation to the photoemission symmetry selections rules. Our results are in excellent agreement with previous tight-binding calculations and support the hidden nesting concept proposed to explain the CDW instabilities exhibited by this family of compounds. In addition, a very peculiar photoemission line-shape has been found with the presence of localized non-dispersive states. Some possible explanations are discussed.  相似文献   

20.
Upon substitution of non-magnetic Al3+ for diamagnetic, low-spin, Co3+ in ferromagnetic La2MnCoO6, the ferromagnetic moment, measured at 82 K and 15 kOe, is found to increase initially with Al content and then decreases, though the magnetic transition temperature decreases continuously on increasing x in La2MnCo1−xAlxO6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号