首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yttrium oxysulfide doped with europium (Y2O2S:Eu3+) red phosphor is used in UV light emitting diodes (LEDs) by mixing with blue and green phosphors to generate white light which are important for the application in general lighting. Here, we demonstrate the effect of shape and size and the concentration of activator (Eu) of red Y2O2S phosphor.  相似文献   

2.
White light emitting phosphor RbVO3 films have been successfully fabricated by means of a vacuum ultraviolet (VUV) irradiation using an excimer lamp after spin coating of metal-organic solution onto substrates. The metal-organic carboxylates coated on substrates decomposed and reacted under the VUV irradiation. The metal-organic bonds were efficiently cleaved by the VUV illumination not only in air but also in vacuum, however, there was not a strong driving force for the reaction process to the formation of RbVO3 in the vacuum atmosphere. On the contrary, the reaction and crystallization simultaneously proceeded under photo-chemically produced active oxygen and/or ozone atmospheres due to the VUV illumination in air. The reaction between the photo-activated Rb-O and V-O species could be strongly enhanced by the oxidation atmospheres at the moment of the metal-organic bond cleavage under the VUV irradiation.  相似文献   

3.
(Y0.99Bi0.01)BO3 phosphor was prepared and its luminescent properties were investigated using the synchrotron radiation instrument in this paper. Site-selective luminescence of Bi3+ in the YBO3 host was demonstrated by exciting/monitoring with different wavelengths at low temperature in this research. At the same time, the energy transfer between the centers of Bi3+ ions occupying different symmetric sites was observed. The excited energy levels of Bi3+ were identified through assigning the emission and excitation spectra. The paths and mechanism of energy transfer between the centers of Bi3+ occupying different symmetric sites were discussed finally.  相似文献   

4.
The photoluminescence (PL) emission and excitation behavior of red-emitting Eu0.1GdxLa1.9−xTeO6 (0.02?x?0.1) powder phosphors is reported. Three dominant bands centered at 395, 466 and 534 nm characterized the excitation spectrum. Under the excitation of 395 nm UV light, the emission spectrum exhibits an intense peak centered at 616 nm corresponding to the 5D07F2 transition of Eu3+. Because the f→f transitions are located in the wavelength range of blue or near-UV range, optimized phosphor, Eu0.10Gd0.08La1.82TeO6, is a promising material for solid-state lighting based on GaN LEDs applications.  相似文献   

5.
Monoclinic LnPO4:Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO4:Tb,Bi phosphor and GdPO4:Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi3+ absorbed most energy then transferred to Tb3+, but in VUV region it was the host which absorbed most energy and transferred to Tb3+.  相似文献   

6.
Luminescence spectral-kinetic studies have been performed for pure and Ce-doped LaPO4 micro- and nanosized phosphates using synchrotron radiation for the excitation within 5-20 eV energy range at T=8-300 K. Mechanisms for the excitation of Ce3+ 5d-4f emission as well as the quenching processes are discussed. The influence of surface defects has been considered to modify considerably the luminescent properties of nanosized phosphors upon the excitation in the energy range of Ce3+ 4f-5d transitions and LaPO4 host absorption.  相似文献   

7.
The low-temperature 4f25d→4f3 fast emission of Nd3+ from YAG:Nd3+ has been studied under excitation by synchrotron radiation. Additionally, 4f3→4f3 luminescence of Nd3+ has been observed and assigned to transitions from the 2F(2)5/2 and 4F3/2 multiplet terms. The observed experimental spectra of Nd3+ d-f emission and f-d excitation are well simulated by crystal-field calculations.  相似文献   

8.
The absorption, photoluminescence, and photoexcitation spectra of a number of inorganic solid solutions with a silver ion impurity have been examined. The influence of the temperature on the spectral characteristics of haloid and oxygen-containing solutions activated with Ag+ ions has been investigated. The temperature dependences of the luminescence quantum yield of solid solutions with Ag+ impurity in the temperature range 77-150 K have been studied. It is shown that the spectra under observation are conditioned by electron transition between energetic levels of Ag+ ion which are deformed because of the interaction with environment.  相似文献   

9.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature.  相似文献   

10.
Solid solutions of vanadates of formula BixLn1−xVO4 (Ln=Y, Gd) doped with Eu3+ or Sm3+ ions have been synthesized by solid-state reactions. Intense red/orange-red luminescence is obtained in these samples on excitation in the broad charge-transfer band in the near UV. The excitation in the Eu3+ levels leads to much less intense red emission. These materials could find applications as red phosphors for solid-state white lighting devices utilizing GaN-based excitation in the near UV.  相似文献   

11.
A new blue-emitting phosphor, Sr1−xPbxZnO2, was prepared by a novel adipic acid templated sol-gel route. Photoluminescence and crystalline properties were investigated as functions of calcination temperatures and the Pb2+ doping levels. It was found that under UV excitation with a wavelength of 283 or 317 nm, the phosphors gave emission from 374 to 615 nm with a peak centered at 451 nm. This broad-band was composed of UV and the visible range was attributed to an impurity-trapped exciton-type emission. The maximum emission intensity of the Sr1−xPbxZnO2 phosphors occurred at a Pb concentration of x=0.01. The decay time was observed to be ∼33 ms for the compound doped with 1 mol% Pb prepared at 1000 °C. Diffuse reflectance spectra revealed the characteristic absorption peaks and the bandgap energy of SrZnO2 was found to be 3.4 eV. SEM analysis indicated that phosphor particles have an irregularly rounded morphology and the average particle size was found to be approximately 1 μm.  相似文献   

12.
ZnO nanocrystals capped with an organic dye Rhodamine 6G (Rh6G) were investigated by photoluminescence (PL) and cathodoluminescence (CL) techniques. PL and CL spectra showed a remarkable decrease in visible emission intensity after ZnO nanocrystals were capped with Rh6G, indicating that dangling bonds and defect states existing at the surface of ZnO nanocrystals were significantly passivated. Rh6G on the ZnO surface exhibited a monomer-like emission, and the intensity and the position of the emission were dependent on the dye concentration.  相似文献   

13.
Double incorporation of Eu3+ and Tb3+ ions into a CaWO4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed.This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.  相似文献   

14.
Characteristics of the defects created at 4.2 K by the UV-irradiation of CsI : Tl crystals in the Tl+-related absorption bands (by photons of 5.8-4.8 eV energy) have been studied. The dependences of the intensities of the thermally stimulated luminescence peaks appearing near 60, 90 and 125 K and of the recombination luminescence photostimulation bands peaking at 2.35, 1.92, 1.33 and 0.89 eV on the irradiation energy and duration, uniaxial stress and thallium concentration have been examined. The mechanisms of the processes, responsible for the appearance of the intense visible (2.55 and 2.25 eV) luminescence of excitons localized near Tl+ ions and creation of defects pairs of the type of Tl0-VK and Tl+-VK with various distances between the components, have been discussed.  相似文献   

15.
Luminescent materials have been prepared by wet impregnation of Europium (III) dibenzoylmethane complexes in either non-silylated or silylated mesoporous MCM-48 silica. Silylation and incorporation of the Eu (III) complex were confirmed by Nuclear Magnetic Resonance, N2-sorption, X-ray diffraction and Infrared spectroscopy. The luminescence properties were investigated at room and high temperatures up to 200 °C. Information on host-guest interactions were collected by analyzing the optical characteristics of the Eu (III) ions in the different media. In particular, the intensity parameter Ω2 is confirmed to be a useful spectroscopic probe for Eu (III) first coordination shell interaction. The role of the O2−—Eu3+ charge transfer band and the impact of the silylation on the luminescence properties at room and high temperatures is demonstrated.  相似文献   

16.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

17.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

18.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

19.
The luminescence of LaY3+ and ScY3+ and ScAl3+ centers created by lanthanum and scandium ions at Y3+ and Al3+ cation sites of YAlO3 perovskite lattice was investigated. The features of emission of excitons localized at the mentioned centers in YAlO3:La and YAlO3:Sc single-crystalline films were analyzed by means of time-resolved emission spectroscopy and luminescence decay kinetics measurements under excitation by synchrotron radiation at 9 and 300 K.  相似文献   

20.
The luminescent properties of CaYBO4:Ln(Ln=Eu3+, Tb3+) were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) region. The CT band of Eu3+ at about 245 nm blue-shifted to 230 nm in VUV excitation spectrum; the band with the maximum at 183 nm was considered as the host lattice absorption. For the sample of CaYBO4:0.08Tb3+, the bands at about 235 and 263 nm were assigned to the f-d transitions of Tb3+ and the CT band of Tb3+ was calculated according to Jφrgensen's theory. Under UV and VUV excitation, the main emission of Eu3+ corresponding to the 5D0-7F2 transition located at about 610 nm and two intense emission of Tb3+ from the 5D4-7F5 transition had been observed at about 542 and 552 nm, respectively. With the incorporation of Gd3+ into the host lattice of CaYBO4, the luminescence of Tb3+ was enhanced while that of Eu3+ was decreased because of their different excitation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号