首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence in anatase titanium dioxide nanocrystals   总被引:7,自引:0,他引:7  
Titanium dioxide (TiO2) nanocrystals were prepared by a hydrolysis process of tetrabutyl titanate. X-ray diffraction and Raman scattering showed that the as-prepared TiO2 nanocrystals have anatase structure of TiO2, and that the monophase anatase nanocrystals can be achieved through a series of annealing treatments below 650 °C. We measured photoluminescence (PL) spectra of the TiO2 nanocrystals. Under 2.41–2.71 eV laser irradiation, the TiO2 nanocrystals displayed strong visible light emission with maxima of 2.15–2.29 eV even at excitation power as low as 0.06 W/cm2. To identify the PL mechanism in the TiO2 nanocrystals, the dependences of the PL intensity on excitation power and irradiation time were investigated. The experimental results indicated that the radiative recombination is mediated by localized levels related to surface defects residing in TiO2 nanocrystallites. Received: 7 April 1999 / Revised version: 23 August 1999 / Published online: 30 November 1999  相似文献   

2.
ZnO nanorods and nanodisks were formed on indium-tin-oxide-coated glass substrates by using an electrochemical deposition method. Scanning electron microscopy images showed that the ZnO nanorods were transformed into nanodisks with increasing Zn(NO3)2 concentration. X-ray diffraction patterns showed that the ZnO nanostructures had wurzite structures. The full widths at half maxima of the near band-edge emission peak of photoluminescence spectra at 300 K for ZnO nanorods were small, indicative of the high quality of the nanorods. These results indicate that the structural and the optical properties of ZnO nanostructures vary by changing Zn(NO3)2 concentration.  相似文献   

3.
ZnO and Mn-doped ZnO polycrystalline films are prepared by plasma enhanced chemical vapour deposition at low temperature (220℃), and room-temperature photoluminescence of the films is systematically investigated. Analysis from x-ray diffraction reveals that a11 the prepared films exhibit the wurtzite structure of ZnO, and Mndoping does not induce the second phase in the films. X-ray photoelectron spectroscopy confirms the existence of Mn^2+ ions in the films rather than metalic Mn or Mn^4+ ions. The emission efficiency of the ZnO film is found to be dependent strongly on the post-treatment and to degrade with increasing temperature either in air or in nitrogen ambient. However, the enhancement of near band edge (NBE) emission is observed after hydrogenation in ammonia plasma, companied with more defect-related emission. Furthermore, the position of NBE shifts towards to high-energy legion with increasing Mn-doped concentration due to Mn incorporation into ZnO lattice.  相似文献   

4.
Thin films of Cd1−xMnxS (0≤x≤0.5) were formed on glass substrates by resistive vacuum thermal evaporation. All the films were deposited at 300 K and the films were annealed at 373, 473 and 573 K for 1 h in a vacuum of 10−6 mbar. Atomic force microscopy (AFM) studies showed that all the films investigated were in nano-crystalline form with a grain size in the range 36-82 nm. All the films exhibited a wurtzite structure of the host material. The lattice parameters varied linearly with composition following Vegard’s law in the entire composition range. Photoluminescence studies showed that two distinct emission bands were observed for each Cd1−xMnxS compound. One corresponds to internal transition and the other one is due to the transition of Mn2+ ions in interstitial sites or in small ‘Mn’ chalcogenic clusters.  相似文献   

5.
Photoluminescence of bare and ZnO infilled artificial opals was investigated. A presence of a photonic band gap results in distortion of the photoluminescence spectra of both the bare and ZnO infilled opal nanocomposite. Filling of the opal with ZnO resulted in a shift of the Bragg diffraction peak from 430 to 460 nm. The emission from ZnO infilled opal contains no UV photoluminescence from ZnO nanocrystals, while the ZnO nanocrystals deposited on substrate by the same method exhibit strong excitonic UV emission. Although a high temperature treatment in ambient air results in an increase in the photoluminescence intensity of the ZnO nanocrystals, the quenched behavior of the excitonic emission from ZnO nanocrystals embedded in the opal matrix remains. A domination of the artificial opal matrix intrinsic emission in the photoluminescence spectra from the untreated as well as heat treated ZnO filled opal nanocomposites is observed.  相似文献   

6.
Optical properties of star-shaped ZnO nanostructures were studied. The temperature-dependent photoluminescence (PL) was examined up to fourth-order longitudinal optical (LO) phonon assisted emissions of free excitons and confirmed that the nature of the room temperature PL in ZnO is 1-LO phonon assisted emission of free excitons. Low threshold ultraviolet stimulated emissions (SE) were obtained for our powder samples at room temperature. Picosecond time-resolved PL measurements detected a bi-exponential decay behavior which is strongly dependent on the excitation intensity: the slow decay term decreased faster than the fast decay term as the excitation intensity increased and the emission decays were dominated by the fast one. We also found that the emission decays decreased super-linearly before the appearance of the SE. This behavior may be used to deduce the threshold of SE or lasing.  相似文献   

7.
Nanocrystalline ZnO powders can act as gain and scattering medium in a random laser where the light emission can be strongly amplified. In this work, we compare the luminescence properties of samples with different particle sizes in the regime of linear and nonlinear optics. In the high-excitation regime random lasing is observed in all samples. Here, the lasing threshold depends strongly on the size distribution in the ensemble. Additional characterization of the samples has been done by determining the absolute quantum efficiency of the radiative processes in the powder. The values are in the 10% range and the near-edge luminescence is strongly influenced by the particle sizes. We show that by annealing the nanocrystals coalesce to larger polycrystalline grains, which results in a new emission band at 3.333 eV due to the grain boundaries. Furthermore, it is found that in the annealed samples the threshold for random lasing could be considerably decreased.  相似文献   

8.
In situ hysteresis measurements were used to follow the evolution of soft magnetic properties of various Co containing Finemet- and Hitperm-type nanocrystalline materials. This work is aimed at obtaining the proper chemical composition of nanocrystalline alloys, which can be applied for highest temperatures and is less affected by the inevitable decoupling phenomena, which is common to all two-phase nanocrystalline systems. Experimental results pointed out that in the Co-added Finemet-type alloys the decoupling temperature can be increased by about 50–70 K as compared to Co-free Finemet alloy. Hitperm alloys, close to equiatomic Fe/Co ratio, have much higher decoupling temperature, but their coercivity is an order of magnitude larger at low temperatures compared to the Co-free alloys so their advantage is evident above 400 °C only.  相似文献   

9.
ZnO nanorods are fabricated by arc discharge with ZnO powder as source materials. The sample is characterized by x-ray diffraction, Raman scattering spectra, scanning electron microscopy and high-resolution transmission electron microscopy. The ZnO nanorods exhibit single crystals with the hexagonal wurtzite structure. Many of them are tetrapod-like. The diameters range from several nanometres to about lOOnm, and the main diameters of the nanorods is around 20nm. The length-to-diameter ratio is more than 5, and the grown directions are along the [001] axis. Photoluminescence spectra show a narrow ultraviolet emission at around 389nm and a broad green emission at around 520 nm. The growth process can be interpreted by the vapour-solid mechanism.  相似文献   

10.
1-x MnxTe quantum well structures at room temperature using time-resolved magnetization modulation spectroscopy. Access to the different electron and hole spin dynamics is obtained by carefully measuring the spectroscopic changes of the magneto-optical response during the first hundreds of femtoseconds after excitation. Experimental results are discussed in the framework of a simple model for a two-dimensional band structure. The spectroscopy is shown to be intimately related to the spectral band width of the applied ultrashort laser pulses. The general potential of the method for fundamental studies on other materials and systems is addressed. Received: 20 September 1998  相似文献   

11.
In this work, Co-doped ZnO nanofibers have been fabricated successfully by an electrospinning technique. The as-prepared nanofibers are characterized by themogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectra and photoluminescence spectroscopy (PL). Results have showed that a wurtzite ZnO nanofibers were obtained and the PL spectrum showed a red-shift by 10 nm due to narrowing of the ZnO band gap (∼3.29 eV) as a result of Co doping. Meanwhile, Raman scattering spectra exhibited an unusual peak at 540 cm−1.  相似文献   

12.
Emission spectra of nanocrystalline ZnS:Mn2+ have been recorded as a function of temperature between 4 and . For the two emission bands observed (a defect-related emission band around and a Mn2+-related emission band around ), the temperature dependence of the width and the position of the emission bands has been analyzed. The shift and the broadening of the Mn2+ emission can be satisfactorily explained by theoretical models and parameters for electron-phonon coupling that are similar to those for bulk ZnS. For the defect-related emission, the shift to lower energies follows the decrease in bandgap of bulk ZnS with increasing temperature. The width of the defect-related emission decreases as the temperature is raised. This anomalous behavior is explained by inhomogeneous broadening at low temperatures.  相似文献   

13.
We report the optical and magnetic properties of laser-deposited Zn1−xCoxO (x=0.06-0.3) thin films with no intentional electrical carrier doping. The analysis of the high-temperature magnetization data provides an unambiguous evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Co ions in Zn1−xCoxO alloy, yielding the value of the effective exchange integral J1/kB to be about −27 K. The low-temperature magnetization data reveals a spin glass transition in Zn1−xCoxO alloy for the Co content x>0.15, giving the value of the spin freezing temperature Tf to be ∼8 and ∼12 K for x=0.2 and 0.25, respectively. Optical spectra analysis shows a linear increase of the band gap Eg with the increase of the Co content following Eg=3.231+1.144x eV.  相似文献   

14.
GaAs nanocrystals were grown on indium tin oxide substrate by an electrodeposition technique. Atomic force microscopic measurement indicates an increase in the size of the nanocrystal with decrease in the electrolysis current density accompanied by the change in the shape of the crystallite. Transmission electron microscopic measurements identify the crystallite sizes to be in the range of 10-15 nm and the crystal structure to be orthorhombic. On account of the quantum size effect, the first optical transition was blue shifted with respect to the band gap of the bulk GaAs and the excitonic peak appeared prominent. A localized phonon mode ascribed to certain point defect occurred in the room temperature micro-Raman spectrum.  相似文献   

15.
SiO2 nanocrystals embedded in Lu2O3 thin film were fabricated using pulsed-laser deposition method. Two dimensional finite element calculations clearly reveal that SiO2 nanocrystals certainly experienced great compressive stress in Lu2O3 thin film. This may lead to a great deal of stress-induced defects at the interface of SiO2 nanocrystals embedded in Lu2O3 thin film and thus induced the observed photoluminescence peak and charge storage properties. The findings presented here indicate that the matrix environment of the nanocrystals plays a significant role in determining their electrical and optical properties.  相似文献   

16.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

17.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

18.
Amorphous and nanocrystalline ribbons of NANOPERM, FINEMET and HITPERM were studied by Mössbauer spectroscopy (MS) after the influence of external factors: different annealing atmospheres, tensile stress and several kinds of corrosion. MS is a suitable tool for such studies because the spectral parameters are very sensitive to changes in the vicinity of the probe — 57Fe nuclei. The most sensitive parameters were hyperfine magnetic field in crystalline component, average hyperfine field in amorphous component and direction of net magnetic moments. Influence of external factors modified also the structure of the alloys, i.e. new or modified phases were identified by MS phase analysis.  相似文献   

19.
Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed. Received: 23 February 2001 / Accepted: 10 May 2001 / Published online: 27 June 2001  相似文献   

20.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号