首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The optical properties of SrSi2AlO2N3 doped with Eu2+ and Yb2+ are investigated towards their applicability in LEDs. The Eu2+-doped material shows emission in the green, peaking around 500 nm. The emission is ascribed to the 4f65d1–4f7 transition on Eu2+. In view of the too low quantum efficiency and the considerable thermal quenching of the emission at the operation temperature of high power LED (>1W/mm2) this phosphor is only suitable for application in low power LEDs. The Yb2+ emission shows an anomalously red-shifted emission compared to Eu2+, which is characterized by a larger FWHM, a larger Stokes shift and lower thermal quenching temperature. The emission is ascribed to self-trapped exciton emission. The Yb2+ activated phosphor is found to be unsuitable for the use in any phosphor-converted LEDs.  相似文献   

2.
Photoluminescence (PL) enhancement of SrSi2O2N2:Eu and the resultant color improvement of white-light were investigated via co-doping Mn with Eu. We observed that a unique absorption of host lattice of SrSi2O2N2 and its visible band emission peaked at around ∼550 nm for SrSi2O2N2:Mn2+ in the wavelength range of 450-600 nm. This highly eye-sensitive ∼550 nm-peaked band emission of SrSi2O2N2 doped with Mn2+ happens to overlap the 535 nm-peaked band emission of SrSi2O2N2 doped with Eu2+, resulting in an intensified photoluminescence in a maximum by 355%. By combining this as-prepared Mn intensified SrSi2O2N2:Eu phosphor with blue InGaN chip, the quality of white-light was improved to 93.3% for color rendering index and 3584 K for correlated color temperature.  相似文献   

3.
The excitation and emission spectra of octahedrally coordinated europium ion (Eu2+) ions in Cs2M2+P2O7 (M2+=Ca, Sr) are reported and discussed. The remarkable features of the Eu2+ luminescence in these phosphate materials include (a) very large Stokes shift of emission (∼1 eV), (b) high luminescence quenching temperature, and (c) unusually low energy of the emitted photons for Eu2+ luminescence in phosphate-based materials. The broad emission bands of Eu2+ in Cs2CaP2O7 and Cs2SrP2O7 peak at 607 and 563 nm, respectively. The Stokes shift, crystal field splitting, centroid shift and the red shift of the Eu2+ 4f65d1 electronic configuration have been estimated from the relevant optical data. The radiative lifetime of the Eu2+ emission in Cs2M2+P2O7 is ∼1.2 μs. The nature of the Eu2+ emission in Cs2M2+P2O7 is discussed and arguments are presented to associate the luminescence with an extreme case of normal 4f65d1→4f7[8S7/2] emission.  相似文献   

4.
A blue emitting phosphor of the triclinic BaCa2Si3O9:Eu2+ was prepared by the combustion-assisted synthesis method and an efficient blue emission ranging from the ultraviolet to visible was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometry (XRD), respectively. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu2+ in BaCa2Si3O9:Eu2+ phosphor is about 0.05 mol. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The CIE of the optimized sample Ba0.95Ca2Si3O9:Eu0.052+ was (x, y)=(0.164, 0.111). The result indicates that BaCa2Si3O9:Eu2+ can be potentially useful as a UV radiation-converting phosphor for white light-emitting diodes (LEDs).  相似文献   

5.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

6.
In this work, we report the high temperature solid-state synthesis of red phosphors Sr2MgSi2O7: Eu3+ with various Eu3+ concentrations. Their luminescent properties at room temperature are investigated. The X-ray diffraction patterns indicate that the red phosphors powder conforms to the tetragonal Sr2MgSi2O7. Impurity structure appears when more than 20% Eu3+ is doped. The samples show a strong emission line at 615 nm and the intensity increases with the increase of Eu3+ concentration until concentration quenching occurs. Charge compensation assists in the reduction of the impurity structure and vacancies; hence the luminescent intensity is enhanced. The decay measurement indicates that the lifetime of Eu3+ emission is about 2-3 ms. Some of the Eu3+ can be reduced to Eu2+; this is also discussed.  相似文献   

7.
The MgO-Ga2O3-SiO2 glass-ceramic (GC) containing MgGa2O4 nanocrystals and glasses doped with Eu3+ ions were prepared by the sol-gel method. The down-conversion and up-conversion luminescence (UCL) properties were studied. The results indicated that the relative intensity of f-f transitions of Eu3+ decreased in contrast with that of charge transfer (CT) absorption with the increase in heating temperature. Using a Xe lamp and 800 nm femtosecond (fs) laser excitation, strong red luminescence of Eu3+ in MgO-Ga2O3-SiO2 glasses and GC was observed.  相似文献   

8.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

9.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

10.
Blue light-emitting glasses were successfully prepared by doping Eu2+ ions in the system Al2O3-SiO2. The Al2O3-SiO2 glasses doped with Eu3+ ions were synthesized using a sol-gel method, followed by heating in hydrogen gas atmosphere to reduce into the Eu2+ ions. The obtained glasses exhibited emission spectra with peak at ∼450 nm due to 4f65d→4f7 (8S7/2) transition, the intensities of which strongly changed depending on their glass composition and heating conditions. The emission quantum efficiency of 48% was achieved by heating the glass with the ratio of Al3+ to Eu3+ at about 6 at 1000 °C in hydrogen gas atmosphere. It was found that the Al2O3-SiO2 glasses were appropriate not only for homogeneously doping the Eu3+ ions in glass structure but also reducing to Eu2+ ions, resulting in enhanced blue light-emission properties.  相似文献   

11.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

12.
In this paper, we report the synthesis and photoluminescence (PL) properties of β′-Gd2Mo3O12 doped with Eu3+ ions. The relationship between Eu3+ luminescence versus concentration and temperature is discussed. In order to investigate the mechanism of concentration quenching, luminescence decay curves are measured and the Inokuti–Hirayama model is used to analyze them. The activation energy for the thermal quenching is estimated by the Arrhenius fitting. The emission spectrum of β′-Gd2Mo3O12 exhibits the strongest emission peak at 614.5 nm due to electric–dipole transition. The excitation spectrum shows several sets of lines in the range of 350–425 nm which are associated with the typical intra-configurational 4f6 transitions of Eu3+. The spectral positions of these lines match well with the emission spectra of near-UV LEDs, which makes the phosphor find a potential application for white light-emitting-diodes.  相似文献   

13.
A novel orange-yellow-emitting Ba2LiB5O10:Eu2+ phosphor has been synthesized by traditional high temperature solid state reaction. A monoclinic crystal structure of Barium lithiumborates Ba2LiB5O10 was verified by the investigation of X-ray diffraction (XRD). The compound crystallizes in the space group of P121/m1(11) (Z = 2) with the unit cell parameters a = 4.414(1) Å, b = 14.576(2) Å, c = 6.697(2) Å and β = 104.26(2)°. Barium and lithium atoms are located in distorted octahedral and tetrahedral oxygen coordinations, respectively. Upon around 365 nm excitation, the Eu2+-activated Ba2LiB5O10 phosphors exhibit a single broad emission band with the maximum at about 587 nm, due to the 4f65d → 4f7(8S7/2) transition of Eu2+. This work investigates the relationship between luminescence properties and structural characterization of the Ba2LiB5O10: Eu2+. This newly developed phosphor shows high potential as a phosphor conversion for white LED applications.  相似文献   

14.
CaZrSi2O7 (CZS), a modification of the thortveitite family, was prepared as a polycrystalline powder material by the conventional solid-state reaction method. Structural, thermal and photoluminescence (PL) properties of the prepared material were investigated in order to evaluate its potentiality. XRD patterns confirm the monoclinic phase of CaZrSi2O7: Eu2+ phosphors.. Emissions arising from transitions between the 5d and 4f orbital gaps of Eu2+ are manifested in the broadband excitation and emission spectra with major peaks at 363 and 512 nm, respectively. The excitation wavelength matches well with that of the emission of the ultraviolet-light emitting diode (UV-LED). Concentration quenching occurs when the Eu2+ concentration is beyond 0.05 and the dipole-dipole interaction was the reason for the corresponding quenching mechanism. The temperature dependence of emission intensity of CZS: Eu2+ phosphor was investigated and it showed better thermal stability than the standard YAG: Ce3+ phosphor.  相似文献   

15.
The monoclinic Ba2ZnSi2O7:Eu2+ blue-green-emitting phosphor and the orthorhombic BaZn2Si2O7:Eu2+ green-emitting phosphor were prepared by combustion-assisted synthesis method as the fluorescent materials for ultraviolet-light-emitting diodes (UV-LEDs) performed as a light source. The crystallinity and luminescence were investigated using X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. Pure monoclinic Ba2ZnSi2O7 and orthorhombic BaZn2Si2O7 crystallize completely at 1100 °C. The doped Eu2+ ions did not cause any significant change in the host structure. The emission spectra presented an emission position red shift of up to 16 nm from Ba2ZnSi2O7:Eu2+ to BaZn2Si2O7:Eu2+. The excitation spectra of Ba2ZnSi2O7:Eu2+ and BaZn2Si2O7:Eu2+ were broad-banding, extending from 260 to 465 nm, which match the emission of UV-LEDs.  相似文献   

16.
The luminescence of Yb3+ in the oxyborate Li2Lu5O4(BO3)3 is reported. At low temperature, in addition to the usual ytterbium infrared emission, this phosphor presents an emission in the ultraviolet () which corresponds to the transition from the charge transfer state (O-Yb) to the 4f levels of Yb3+. The temperature quenching Tq50% is equal to 120 K. The infrared emission studied at room temperature is located between 950 and 1100 nm.Europium emission quenching in the Li2Yb5O4(BO3)3 phase is related to Eu→Yb transfer by cross-relaxation. The reverse Yb→Eu transfer by cooperative sensitization is highlighted in the codoped Li2Lu5O4(BO3)3 compound.  相似文献   

17.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED.  相似文献   

18.
Alumina (Al2O3) powders doped with europium trivalent (Eu3+) were prepared by a low-temperature (∼280 °C) combustion synthesis technique. When the powder was heat treated at 1200 °C for 2 h in the presence of flowing ammonia (NH3), α-Al2O3 crystalline ceramic powders was obtained. The analysis of the luminescence showed that Eu3+ was reduced to europium divalent (Eu2+) after the heat-treatment process. Under ultraviolet (UV) lamp excitation (λ=254 nm) these powders containing sub-microcrystalline structures present bright red (Al2O3:Eu3+) and green (Al2O3:Eu2+) luminescence indicating that this material is a potential candidate for applications in phosphor technology.  相似文献   

19.
The Sr2Si5N8:Eu2+ phosphors, both undoped and doped with Tm3+, were synthesized by high temperature solid-state method. The XRD pattern shows that only Sr2Si5N8 phase is formed whatever Tm3+ was doped or not. The peak positions of both phosphors are centered at 612 nm which is assigned to the 4f65d→4f7 transition of Eu2+. It implies that the crystal field, which affects the 5d electron states of Eu2+, is not changed dramatically after the phosphor is doped with Tm3+. The afterglow time is about 10 min after Tm3+ ion is introduced into the phosphor. The concentration of Tm3+ has little influence on the afterglow time of the phosphor. The depths of trap energy level of the two phosphors were calculated based on the TL spectra. The depths of Sr2Si5N8:Eu2+ and Sr2Si5N8:Eu2+, Tm3+ are 1.75 and 1.01 eV, respectively.  相似文献   

20.
Tb-doped SrSi2O2N2 phosphors with promising luminescent properties were synthesized by the conventional solid-state reaction method, characterized by powder X-ray diffraction and studied by photoluminescence excitation and emission spectra. The synthesized materials exhibited a weak blue emission and a strong green emission in the region of 400-470 nm and 480-650 nm, which are attributed to 5D37Fj (j=5, 4, 3) and 5D47Fj (j=6, 5, 4, 3) transitions of Tb3+, respectively. The green emission from 5D47F5 at 543 nm showed the highest intensity under the optimized concentration of 0.1 mol, after which the quenching concentration became relevant. The quenching behavior of the emission of Tb3+ was explained by the cross-relaxation of its excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号