首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive magnetron co-sputtering of two confocal SiO2 and Er2O3 cathodes in argon-hydrogen plasma was used to deposit Er-doped Si-rich SiO2 layers. The effects of the deposition conditions (such as RF power applied on each cathode and total plasma pressure) and annealing treatment (temperature and duration) on structural, compositional and photoluminescence (PL) properties of the layers were examined. It was found that a significant enhancement of both Er3+ PL intensity and emission lifetime up to 9 ms have been reached through monitoring of the conditions of both deposition process and annealing treatment. The effective absorption cross section and the fraction of Er ions coupled to Si clusters were analyzed. It was shown an increase of the fraction of Er3+ ions coupled to Si up to 11%.  相似文献   

2.
Er-Si-O crystalline compounds, which exhibit superlattice structures and sharp and strong Er-related 1.54 μm photoluminescence (PL) spectra at room temperature have been formed by self-assembling growth mechanism. Oxidation of the starting materials which have Si and Er at an atomic ratio of 2:1 are prepared and then oxidation and succeeding high-temperature annealing in Ar above 1250 °C cause a self-assembled superlattice-structured Er-Si-O crystalline compounds. The control of the ratio of Si and Er, as well as the following oxidation and annealing processes, is found to be sensitive to the crystalline properties, PL spectra and electrical properties. In this study, Er-Si-O crystalline thin films are formed on Si substrates by sol-gel and MOMBE methods, and their crystalline properties such as crystalline orientation and concentration ratio of Er, Si and O are investigated. Crystalline Er-Si-O films of high orientation are successfully grown on Si(1 0 0) and its inclined surface. The PL and excitation spectra, fluorescence decay and the electrical properties are found to be strongly related to the crystalline properties. Excess O causes a broader 1.54 μm PL spectra, slower fluorescence decay, lower carrier-mediated excitation and higher resistivity. A precise control of O is found to be necessary to grow superlattice-structured Er-Si-O compounds, which are semiconducting and are excitable via carrier-mediated excitation mechanism.  相似文献   

3.
J. Zachariae 《Surface science》2006,600(13):2785-2794
Exploring ways for self-organized structuring of insulating thin films, we investigated the possibility to produce replicas of step trains, given by a vicinal Si(0 0 1)-4°[1 1 0] surface, in layers of crystalline and perfectly lattice-matched Ba0.7Sr0.3O. For this purpose, we carried out high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(0 0 1) and on Si(0 0 1)-4°[1 1 0]. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Our G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation of layer distances. Nevertheless, we are able to show that quite smooth and closed oxide films are obtained with an rms roughness of about 1 ML. These Ba0.7Sr0.3O films directly follow the step train of Sr-modified vicinal Si surfaces that form (1 1 3) oriented facets after adsorption of a monolayer of Sr. This proves that self-organized structuring of insulating films can indeed be an effective method.  相似文献   

4.
The effects of Si nanocluster (Si-nc) size and spacing from Er3+ ions were investigated through studies made on appropriate configurations of multilayers obtained by reactive magnetron sputtering at 650 °C and subsequently annealed at 900 °C. Si-nc larger than about 5 nm appear ineffective for resonant excitation of Er because of the resulting weak confinement responsible for negligible direct radiative recombination. This direct no-phonon transition probability is closely correlated to the energy transfer rate, both decreasing when Si-nc size increases. For large Si-nc having a bandgap lower than 1.26 eV, the energy transfer to the upper levels (second, third, etc.) of Er3+ is no more possible, leading to the observed abrupt decrease of the 1.54-μm emission. The latter is governed by the distance separating Er ions from their Si-nc sensitizers, whose behavior was well described by an exponentially decreasing exchange interaction. The characteristic interaction distance was found to be dependent on the amorphous or crystalline nature of Si-nc, and it appears as small as 0.4±0.1 nm for the former (amorphous) and of some nanometers for the crystallized Si-nc.  相似文献   

5.
Observations of vacancy clusters formed in Czochralski (Cz) Si after high energy ion implantation are reported. Vacancy clusters were created by 2 MeV Si ion implantation of 1 × 1015 ions/cm2 and after annealing between 600 and 650 °C. Doppler broadening measurements using a slow positron beam have been performed on the self-implanted Si samples, both as-implanted and after annealing between 200 and 700 °C for time intervals ranging from 15 to 120 min. No change in the S parameter was noted after the thermal treatment up to 500 °C. However, the divacancies (V2) created as a consequence of the implantation were found to start agglomerating at 600 °C, forming vacancy clusters in two distinct layers below the surface; the first layer is up to 0.5 μm and the second layer is up to 2 μm. The S-W plots of the data suggest that clusters of the size of hexavacancies (V6) could be formed in both layers after annealing for up to an hour at 600 °C or half an hour at 650 °C. After annealing for longer times, it is expected that vacancies are a mixture of V6 and V2, with V6 most probably dominating in the first layer. Further annealing for longer times or higher temperatures breaks up the vacancy clusters or anneals them away.  相似文献   

6.
Silicon carbide layers were grown on a Si substrate at a temperature below 1100 °C and pressure of 10Pa. The synthesis was carried out in a tube furnace through cyclic heating process using methane as a carbon source and Sm-Co mixed powder as a solvent. The growth of SiC from rare earth Sm-based solvent is an innovative approach, and Co can promote the formation of solvent during the growth process. The structural and compositional analyses were carried out using X-ray diffraction, electron probe micro-analyzer, scanning electron microscopy and transmission electron microscopy. Results indicated that β-SiC was successfully fabricated on Si (1 1 1) substrate. The heterogeneous nucleation of β-SiC was found to be observed initially at the edge of triangle-shaped sites on Si (1 1 1) surface that formed due to the existence of Co, and then grew and expanded to form β-SiC film. The growth process of SiC via vapour-liquid-solid mechanism was also discussed in this study.  相似文献   

7.
Ting Ji 《Applied Surface Science》2007,253(6):3184-3189
In this work, an ultra-high vacuum scanning tunneling microscopy has been utilized to study the effects of Si atoms to the formation and growth evolution of Er silicide nanostructures. Si evaporation is performed on the vicinal Si(0 0 1) surface as well as Er growth under different growth conditions: growth procedure, annealing temperature and duration time. The experimental results show that the Si evaporation performed at a high temperature plays a key role on the growth of Er silicide nanostructures. The deposited Si atoms become a significant source of the Si reactant and mainly affect the early growth stage of the nanostructures. It is also shown that Er atom is possibly another diffusing species during the growth of Er silicide nanostructures on the Si(0 0 1) surface.  相似文献   

8.
Fabrication of device structures based on laterally self-ordered systems without the use of expensive and time-consuming nanolithography could have undoubted advantages. For such applications, it is proposed to use misfit dislocation networks from partially relaxed SiGe layers on (1 0 0) Si substrate as a template for the growth of highly ordered SiGe islands. Ion bombardment during molecular beam epitaxy of metastable SiGe layers leads to such a partial relaxation by misfit dislocation networks. The ions are generated by the interaction of the evaporated Si flux with the electrons in an electron beam evaporator, which causes a partial ionization of Si atoms in the molecular beam. We demonstrate by atomic force microscopy that subsequent growth of SiGe on such relaxed SiGe (25-50% Ge) layers leads to the formation of uniform three-dimensional islands highly ordered in 〈1 1 0〉 directions.  相似文献   

9.
To reveal the influence of erbium interlayer on the formation of nickel silicide and its contact properties on Si substrate, Er(0.5-3.0 nm) and Ni(20 nm) are successively deposited onto Si(1 0 0) substrate and are treated by rapid thermal annealing in pure N2 ambient. The NiSi formation temperature is found to increase depending on the Er interlayer thickness. The formation temperature of NiSi2 (700 °C) is not influenced by Er addition. But with 2 nm Er interlayer, the formed NiSi2 is observed textured with preferred orientation of (1 0 0). During the formation of NiSi, Er segregates to the surface and little Er remains at the NiSi/Si(1 0 0) interface. Therefore, the Schottky barrier height of the formed NiSi/n-Si(1 0 0) contact is measured to be 0.635 ∼ 0.665 eV which is nearly invariable with different Er addition.  相似文献   

10.
 Photoluminescence (PL) properties of Er-doped silicon rich oxide thin films deposited on Si substrate by co-evaporation of silicon monoxide and Er under different atmospheres are investigated. The samples exhibit luminescence peak at 1.54 μm which could be assigned to the recombination in intra-4f Er3+ transition. PL shows that this transition is highest when ammonia atmosphere is used during deposition followed by an annealing temperature at 850 °C in 95% N2+5% H2 gas (forming gas). In fact, we believe that the presence of the N atoms around Er ions increases the intensity of the 1.54 μm luminescence.  相似文献   

11.
Pt/Al-MCM-41 samples with constant metal loading but various Si/Al ratios were prepared by reacting pure silica MCM-41 with different concentrations of polyaluminum chloride (PAC) aqueous solutions. It is observed that the molar ratio of Si/Al decreases from 24.3 to 11.2 when increase the PAC concentration from 0.1 M to 2.0 M. A better retention of structural integrity could be seen when the PAC concentration is below 1.0 M. The Lewis acid increases while incorporating aluminum into the framework of MCM-41, while the Brönsted acid reaches a maximum value when the PAC concentration is 1.0 M. Hydroisomerization of n-dodecane was carried out over these Pt/Al-MCM-41 samples. It is demonstrated that increasing the aluminum content generally can trigger a higher n-dodecane conversion, but a lower isomers selectivity due to the increasing strong Brönsted acid sites. And the Pt/Al-MCM-41 post-synthesized by the PAC concentration at 1.0 M shows highest isomers selectivity and yield corresponding to the maximum medium Brönsted acid quantities (24.15 μmol/g).  相似文献   

12.
The pulsed laser processing in liquid media is an attractive alternative to produce room temperature luminescent silicon nanocrystals (Si-ncs). We report on a blue luminescent Si-ncs preparation by using nanosecond pulsed laser (Nd:YAG, KrF excimer) processing in transparent polymer and water. The Si-ncs fabrication is assured by ablation of crystalline silicon target immersed in liquids. During the processing and following aging in liquids, oxide based liquid media, induce shell formation around fresh nanocrystals that provides a natural and stable form of surface passivation. The stable room temperature blue-photoluminescent Si-ncs are prepared with maxima located around ∼440 nm with corresponding optical band gap around ∼2.8 eV (∼430 nm). Due to the reduction of surface defects, the Si-ncs preparation in water, leads to a narrowing of full-width-half-maxima of the photoluminescence spectra.  相似文献   

13.
We have fabricated parallel stripes of nanostructures in an n-type Si substrate by implanting 30 keV Ga+ ions from a focused ion beam (FIB) source. Two sets of implantation were carried out. In one case, during implantation the substrate was held at room temperature and in the other case at 400 °C. Photoemission electron microscopy (PEEM) was carried out on these samples. The implanted parallel stripes, each with a nominal dimension of 4000 nm × 100 nm, appear as bright regions in the PEEM image. Line scans of the intensities from the PEEM image were recorded along and across these stripes. The intensity profile at the edges of a line scan is broader for the implantation carried out at 400 °C compared to room temperature. From the analysis of this intensity profile, the lateral diffusion coefficient of Ga in silicon was estimated assuming that the PEEM intensity is proportional to Ga concentration. The diffusion coefficient at 400 °C has been estimated to be ∼1.3 × 10−15 m2/s. Across the stripes an asymmetric diffusion profile has been observed, which has been related to the sequence of implantation of these stripes and the associated defect distribution due to lateral straggling of the implanted ions.  相似文献   

14.
SnO2 thin films undoped and doped with antimony (Sb), erbium (Er) and Si nanocrystals (Si-nc) have been grown on silicon (Si) substrate using sol-gel method. Room-temperature photoluminescence (PL) measurement of undoped SnO2, under excitation at 280 nm, shows only one broad emission at 395 nm, which is related to oxygen vacancies. The PL of Er3+ ions was found to be enhanced after doping SnO2 with Sb and Si-nc. The excitation process of Er is studied and discussed. The calculation of cross-section suggests a sensitisation of Er PL by Si-nc.  相似文献   

15.
We have measured the range and range straggling for energetic 100-900 keV Er ions in amorphous Si by means of Rutherford backscattering followed by spectrum analysis. The results are compared with other experimental data and Monte Carlo (SRIM-2003) calculations. Our experimental results show that, although the measured values for both range and range straggling exceed the SRIM predictions, they are nevertheless consistent with trends that have been previously observed. We see no anomalous trends in range and range straggling parameters for the rare earth ions for implant energies E ≥ 100 keV. We present a detailed consideration of 4He stopping powers in Si due to its crucial impact on RBS range measurements.  相似文献   

16.
In many common Al–Mg–Si alloys (6000 series) intermediate storage at or near ‘room temperature’ after solutionising leads to pronounced changes of the precipitation kinetics during the ensuing artificial ageing step at ≈180 °C. This is not only an annoyance in production, but also a challenge for researchers. We studied the kinetics of natural ‘room temperature’ ageing (NA) in Al–Mg–Si alloys by means of various different techniques, namely electrical resistivity and hardness measurement, thermoanalysis and positron lifetime and Doppler broadening (DB) spectroscopy to identify the stages in which the negative effect of NA on artificial ageing might appear. Positron lifetime measurements were carried out in a fast mode, allowing us to measure average lifetimes in below 1 min. DB measurements were carried out with a single detector and a 68Ge positron source by employing high momentum analysis. The various measurements show that NA is much more complex than anticipated and at least four different stages can be distinguished. The nature of these stages cannot be given with certainty, but a possible sequence includes vacancy diffusion to individual solute atoms, nucleation of solute clusters, Mg agglomeration to clusters and coarsening or ordering of such clusters. Positron lifetime measurements after more complex ageing treatments involving storage at 0 °C, 20 °C and 180 °C have also been carried out and help to understand the mechanisms involved.  相似文献   

17.
Spectroscopic ellipsometry is used to investigate optical properties of cobalt-implanted silica thin films. The films under investigation are 250 nm thick thermal SiO2 layers on Si substrates implanted with Co+ ions at energy of 160 keV and at fluences of 1017 ions/cm2 for different temperatures of substrate during implantation (77 and 295 K). Changes due to Co+ implantation are clearly observed in the optical response of the films. Optical behaviours are furthermore different for the three implantation temperatures. To understand the optical responses of these layers, the ellipsometric experimental data are compared to different models including interference effects and metal inclusions effects into the dielectric layer. The simulated ellipsometric data are obtained by calculating the interferences of an inhomogeneous layer on a Si substrate. The material within this layer is considered as an effective medium which dielectric function is calculated using the Maxwell-Garnett effective medium approximation. We show that although the structures of these layers are very complicated because of ion-implantation mechanisms, quite simple models can provide relatively good agreement. The possibilities of ellipsometry for the study of the optical properties of such clusters-embedded films are discussed. We especially provide the evidence that ellipsometry can give interesting information about the optical properties of nanostructured layers. This is of special interest in the field of nanostructured layered systems where ellipsometry appears to be a suitable optical characterization technique.  相似文献   

18.
Nickel nanoparticles were grown in silica glass by annealing of the sol-gel prepared silicate matrices doped with nickel nitrate. TEM characterization of Ni/SiO2 glass proves the formation of isolated spherical nickel nanoparticles with mean sizes 6.7 and 20 nm depending on annealing conditions. The absorption and photoluminescence spectra of Ni/SiO2 glasses were measured. In the absorption spectra, we observed the band related to the surface plasmon resonance (SPR) in Ni nanoparticles. The broadening of SPR was observed with decrease of Ni nanoparticle size. The width of the surface plasmon band decreases 1.5 times at the lowering of temperature from 293 to 2 K because of strong electron-phonon interaction. The spectra proved the creation of nickel oxide NiO clusters and Ni2+ ions in silica glass as well.  相似文献   

19.
Alternately Er doped Si-rich Al2O3 (Er:SRA) multilayer film, consisting of alternate Er-Si-codoped Al2O3 (Er:Si:Al2O3) and Si-doped Al2O3 (Si:Al2O3) sublayers, has been synthesized by co-sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700-1100 °C was studied. The maximum intensity of Er3+ PL, about 10 times higher than that of the monolayer film, was obtained from the multilayer film annealed at 950 °C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals in the Si:Al2O3 sublayers to the neighboring Er3+ ions in the Er:Si:Al2O3 sublayers. The PL intensity exhibits a nonmonotonic temperature dependence: with increasing temperature, the integrated intensity almost remains constant from 14 to 50 K, then reaches maximum at 225 K, and slightly increases again at higher temperatures. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.  相似文献   

20.
We demonstrate that precipitation of implanted erbium ions at silicon-polymer interface initiates oxidation reaction of Si(1 0 0) surface at room temperature. Oxidation reaction starts through spontaneous formation of circular patches of SiOx and the diameter of these circles grows uniformly with time and touch each other to cover the entire surface by keeping the thickness of these patches almost fixed at 4 nm. The nucleation and in-plane growth rates of SiOx circles are found to be dependent on the fluence of erbium-implantation, the condition of substrate and can be controlled by controlling oxygen partial pressure of the environment. In addition to the precipitation of erbium ions at silicon-polymer interface, enhancement of concentration of erbium ions was observed at periodic depths within polymer film confirming that in ultra-thin films polymer molecules form layers parallel to substrate surface due to confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号