首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the fabrication and performance of Si-based light sources. The devices consist of MOS structures with erbium (Er)-doped silicon rich oxide (SRO) film as gate dielectric. The devices exhibit electroluminescence (EL) at 1.54 μm at room temperature with a 0.2% external quantum efficiency. These devices show a high stability due to the silicon excess in the film. The Er-doped SRO films have been introduced in a Si/SiO2 Fabry-Perot Microcavity in order to increase the spontaneous emission rate, the extraction efficiency and the spectral purity at the resonant wavelength. The active medium in the cavity has been electrically pumped and the conduction mechanisms have been analyzed. The EL spectra have also been acquired and compared with photoluminescence (PL) ones for the same resonant cavity light-emitting device (RCLED). The EL and PL peak intensities of the on-axis emission at the resonant wavelength are over 20 times above that of the similar Er-doped SRO film without a cavity. The Si-based RCLEDs exhibit different quality factors, ranging from 60 to 170. The spectra shape and intensity have been correlated with the quality factor. A high directionality of the emitted light, due to the presence of the resonant cavity, has also been observed: the overall luminescence is confined within 10° cone from the sample normal.  相似文献   

2.
利用浸渍法将8羟基喹啉铝(Alq3)镶嵌到多孔硅微腔中,制备了多孔硅微腔—Alq3镶嵌膜,研究了多孔硅微腔对镶嵌其中的Alq3自发发射的微腔效应,观察到了光谱窄化、发光强度增强等现象。镶嵌于多孔硅微腔中的Alq3荧光光谱的半峰全宽只有15nm,而非微腔样品,即镶嵌于普通的单层多孔硅中Alq3荧光谱半峰全宽在85nm以上。并且有微腔时Alq3发光强度比没有微腔时Alq3发光强度增强一个数量级。随机改变微腔中Bragg反射镜高折射率层的几何厚度可使高反射区展宽,从而更加有效地抑制了多孔硅本身的发光模,使发光色度更纯,但由于峰值透射率减小,导致共振峰强度有所减小。多孔硅微腔有机镶嵌膜有可能成为进一步发展Alq3在电致发光器件方面应用的一条新途径。  相似文献   

3.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

4.
Light emitting pn-diodes were fabricated on a 5.8 μm thick n-type Si device layer of a silicon-on-insulator (SOI) wafer using standard silicon technology and boron implantation. The thickness of the Si device layer was reduced to 1.3 μm, corresponding to a 4λ-cavity for λ=1150 nm light. Electroluminescence spectra of these low Q-factor microcavities are presented. Addition of Si/SiO2 Bragg reflectors on the top and bottom of the device (3.5 and 5.5 pairs, respectively) is predicted to lead to spectral emission enhancement by ∼270.  相似文献   

5.
We report on the optical properties of active silicon (Si)-rich Si?N? microdisk cavities in the visible range. We have studied the correlation between the quality (Q) factor of the cavities and the active material deposition parameters. Microphotoluminescence measurements revealed subangstrom whispering galley modes resonances and a maximum Q of 10? around 760 nm. These values improve significantly the best results reported so far for Si-based light-emitting circular resonators in the visible range. In contrast to what is reported for Si-rich SiO?-based microcavities, we demonstrate the absence of a spectral widening at high pump fluxes associated to carrier absorption mechanisms, which allows high emitted power without degrading the Q of the cavity. These results open the route toward the monolithic integration of those structures into more complex circuits including Si photodetectors.  相似文献   

6.
We report on light emission from silicon nanocrystals (Si-nc) in a laser cavity. Using modified electrochemical etching of Si wafers we prepare Si-nc with blue-shifted photoluminescence spectrum down to 580-620 nm, embedded at high-volume fractions in a SiO2-based solid matrix. We insert this active medium into an optically pumped resonator. Since our samples are only partially homogeneous, we cannot use external mirrors in order to achieve optical feedback: we induced optically an internal distributed cavity by intense, spatially periodical excitation. Mode selection was simulated by a simplified theoretical model, based on an approach of multiple reflections. In the framework of the model we discuss the experimentally observed spectral emission changes induced by the distributed cavity.  相似文献   

7.
Photoluminescent and optical properties of porous oxide films formed by two-step aluminum anodization at a constant potential of 30 V in sulfamic acid have been investigated after their annealing, ranging from room temperature up to 600 °C. X-ray diffraction reveals the amorphous nature of porous oxide films. Infrared and energy dispersive spectroscopy indicates the presence of sulfuric species incorporated in oxide films during the anodization. Photoluminescence (PL) measurements show PL bands in the range from 320 to 600 nm. There are two peaks in emission and excitation spectra. One emission peak is at constant wavelength centered at 460 nm and the other shifts from 390 to 475 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is at constant wavelength at 270 nm and the other also shifts to longer wavelengths while increasing emission wavelength. Upon annealing of the as-prepared oxide films PL increases reaching maximum value at about 300 °C and then decreases. The results indicate the existence of two PL centers, one placed at surface of the pore wall, while the other positioned inside the oxide films.  相似文献   

8.
Single-mode, highly directional and stable photoluminescence (PL) emission has been achieved from porous silicon microcavities (PSMs) fabricated by pulsed electrochemical etching. The full width at half maximum (FWHM) of the narrow PL peak available from a freshly etched PSM is about 9 nm. The emission concentrates in a cone of 10° around the normal of the sample, with a further reduced FWHM of ∼5.6 nm under angle-resolved measurements. Only the resonant peak is present in such angle-resolved PL spectra. No peak broadening is found upon exposure of the freshly prepared PSM to a He-Cd laser beam, and the peak becomes somewhat narrower (∼5.4 nm) after the PSM has been stored in an ambient environment for two weeks. At optimized etching parameters, even a 4-nm FWHM is achievable for the freshly etched PSM. In addition, scanning electron microscopy (SEM) plane-view images reveal that the single layer porous Si formed by pulsed current etching is more uniform and flatter than that formed by direct current (dc) etching, demonstrated by the well-distributed circular pores with small size in the former in comparison with the irregular interlinking pores in the latter. The SEM cross-section images show the existence of oriented Si columns of 10 nm diameter along the etching direction within the active layer, good reproducibility and flat interfaces. It is thus concluded that pulsed current etching is superior to dc etching in obtaining flat interfaces within the distributed Bragg reflectors because of its minor lateral etching. Received: 7 March 2001 / Accepted: 23 July 2001 / Published online: 30 October 2001  相似文献   

9.
The photoluminescence (PL) of the annealed and amorphous silicon passivated porous silicon with blue emission has been investigated. The N-type and P-type porous silicon fabricated by electrochemical etching was annealed in the temperature range of 700-900 °C, and was coated with amorphous silicon formed in a plasma-enhanced chemical vapor deposition (PECVD) process. After annealing, the variation of PL intensity of N-type porous silicon was different from that of P-type porous silicon, depending on their structure. It was also found that during annealing at 900 °C, the coated amorphous silicon crystallized into polycrystalline silicon, which passivated the irradiative centers on the surface of porous silicon so as to increase the intensity of the blue emission.  相似文献   

10.
Linearly-polarized infrared (1.06 μm) laser light with intensities ranging from 5.3 to 97 mW/cm2 has been used to obtain anisotropically luminescent porous silicon (PSi) layers by photoanodic etching in a hydrofluoric acid solution. Remarkably large photoluminescence (PL) anisotropy has been observed in samples prepared with the highest illumination intensity. These samples show very low degrees of linear polarization when the PL excitation light is polarized parallel to the polarization direction of the etching light. When the excitation light is polarized perpendicular to that, we obtain usual degrees of linear polarization of several percent. This result indicates that anisotropic Si nanostructures in PSi layers can be made isotropic with high orientation selectivity by the polarized-light assisted technique. A simple two-dimensional model is presented to explain the observed prominent anisotropy.  相似文献   

11.
ZnO nanostructures have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si(1 0 0) substrates without any catalyst and at atmospheric argon pressure. The influence of the source temperature on the morphology and luminescence properties of ZnO nanostructures has been investigated. ZnO nanowires, nanoflowres and nanotetrapods have been formed upon the Si(1 0 0) substrates at different source temperatures ranging from 1100 to 1200 °C. Room temperature photoluminescence (PL) spectra showed increase green emission intensity as the source temperature was decreased and ZnO nanowires had the strongest intensity of UV emission compared with other nanostructures. In addition, the growth mechanism of the ZnO nanostructures is discussed based on the reaction conditions.  相似文献   

12.
In the present paper we report structural and photoluminescence (PL) results from samples obtained by Si implantation into stoichiometric silicon nitride (Si3N4) films. The Si excess was introduced in the matrix by 170 keV Si implantation performed at different temperatures with a fluence of Φ=1×1017 Si/cm2. The annealing temperature was varied between 350 and 900 °C in order to form the Si precipitates. PL measurements, with a 488 nm Ar laser as an excitation source, show two superimposed broad PL bands centered around 760 and 900 nm. The maximum PL yield is achieved for the samples annealed at 475 °C. Transmission electron microscopy (TEM) measurements show the formation of amorphous nanoclusters and their evolution with the annealing temperature.  相似文献   

13.
Narrow photoluminescence peaks with a full-width at half-maximum of 14–20 nm are obtained from porous silicon microcavities (PSM) fabricated by the electrochemical etching of a Si multilayer grown by molecular beam epitaxy. The microcavity structure contains an active porous silicon layer sandwiched between two distributed porous silicon Bragg reflectors; the latter were fabricated by etching a Si multilayer doped alternatively with high and low boron concentrations. The structural and optical properties of the PSMs are characterised by scanning electron microscopy and photoluminescence (PL). The wavelength of the narrow PL peaks could be tuned in the range of 700–810 nm by altering the optical constants.  相似文献   

14.
Tin oxide (SnO2)-layers-doped terbium and europium ions are elaborated by the sol-gel method on silicon substrates. After annealing at 500 °C, the transmission electron microscopy revealed a crystallization of tin oxide.The emission properties of rare-earth in SnO2 are studied systematically against temperature annealing and Tb3+ concentration. The PL spectrum is optimal after annealing at 900 °C and the corresponding photoluminescence (PL) decay is nearly exponential, showing that the sample is homogenous and the PL process can be described by two levels system.The concentration effect shows a quenching of the PL intensity for Tb3+ concentration above 4%. From the investigation of the decay rate from the 7F5 state within terbium concentration, we show that self-quenching is insured by dipole - dipole interaction. The evolutions of both PL intensity and PL lifetime versus temperature are studied. The PL intensity and PL lifetime are enhanced by deposing SnO2:Tb3+ and SnO2:Eu3+ in porous silicon. We show that an efficient excitation transfer from Si nanocrystallites to RE ions can occur.  相似文献   

15.
In this work, the nanocrystalline porous silicon (PS) is prepared through the simple electrochemical etching of n-type Si (1 0 0) under the illumination of a 100 W incandescent white light. SEM, AFM, Raman and PL have been used to characterize the morphological and optical properties of the PS. SEM shows uniformed circular pores with estimated sizes, which range between 100 and 500 nm. AFM shows an increase in its surface roughness (about 6 times compared to c-Si). Raman spectra of the PS show a stronger peak with FWHM=4.3 cm−1 and slight blueshift of 0.5 cm−1 compared to Si. The room temperature photoluminescence (PL) peak corresponding to red emission is observed at 639.5 nm, which is due to the nano-scaled size of silicon through the quantum confinement effect. The size of the Si nanostructures is estimated to be around 7.8 nm from a quantized state effective mass theory. Thermally untreated palladium (Pd) finger contact was deposited on the PS to form MSM photodetector. Pd/PS MSM photodetector shows lower dark (two orders of magnitude) and higher photocurrent compared to a conventional Si device. Interestingly, Pd/PS MSM photodetector exhibits 158 times higher gain compared to the conventional Si device at 2.5 V.  相似文献   

16.
The spontaneous emission of a material can be controlled by placing it in a micron-sized optical cavity. In this paper we introduce the subject and we discuss the realization, the physics and perspective applications of all porous silicon microcavities. The emission properties of the cavities have been characterized as a function of the temperature, of the excitation power and of the response time. Coupled microcavities are demonstrated. Modeling of the structure have been performed on the basis of a transfer matrix approximation.  相似文献   

17.
Wenyuan Rao 《Optik》2010,121(21):1934-1936
We present a design of all-optical switches based on one-dimensional photonic crystals (1D PhC) doped with nonlinear optical materials. The 1D PhC switch structure is composed of a PhC cavity sandwiched by two accessional PhC microcavities. The center PhC cavity has two resonant frequencies with nearly the same quality factors (Q), while the accessional PhC cavities have the same resonant frequency, which is equal to one of the resonant frequencies of the center cavity. The two accessional PhC cavities cause reduction of Q value in this resonant frequency and result in different Q values of two modes. We realize all-optical switch effect by selecting pump light wavelength at the low Q mode and probe light wavelength at the other mode. The theoretical simulations by using the finite difference time domain method show that the pump light intensity required to realize optical switch effect in the designed switch is 50 times smaller than that in one-dimensional photonic crystals cavity with only one resonant mode.  相似文献   

18.
Si/SiO2 Fabry–Pérot microcavities with a silicon nanocrystal (Si-nc) active spacer have been realized using a novel process based on a reactive magnetron sputtering of a pure silica target. Spectral, spatial and temporal behaviours of the quantum dots confined inside the resonator are detailed. Compared with a reference sample, the spectral and spatial emission distributions are significantly narrowed and the forward emission intensity is enhanced. Time resolved photoluminescence measurements also revealed an increase of the spontaneous emission rate. PACS 42.70.Qs; 78.55.-m; 78.66.-w  相似文献   

19.
The paper deals with synthesis of Sb doped ZnO nanowire by considering Si coated with Sb and Au as substrate using carbothermal evaporation method. The horizontally oriented Sb doped ZnO nanowires with a diameter of 1 μm synthesized at 900 °C, which is quite high as compared to the Pure ZnO nanowires generated without the influence of Sb at 900 °C. The nanowire synthesized at 900 °C showed a measurable lower angle of about 0.06° from XRD and suppression of A1T and E1(L0) modes in Raman spectroscopic, this confirms the incorporation of Sb in ZnO lattice. The strong exciton emission and weak deep-level emission from room temperature PL and Strong emission attributed to the radiant recombination from neutral-acceptor-bound exciton (A0X) peak accompanied by two strong and broad emission of donor acceptor pair (DAP) from low temperature PL, this confirms the use of Sb as an acceptor for ZnO.  相似文献   

20.
Display and illumination technology require light sources with angular independent emission behaviour. Conversely, a strongly angular dependent spectral emission can be desirable for other applications in information technology or spectroscopy. In order to elucidate the potential of organic light-emitting devices (OLEDs) for the latter fields, we performed experimental and numerical studies of the angular dependent emission characteristics of cavity like OLEDs. The light generated in the organic multilayer structure and guided in leaky modes was coupled out by a prism. Here, a semitransparent gold anode, acting as a hole injection layer, was used to enhance the coupling of leaky modes guided inside the OLED to external modes (Kretschmann configuration). The observed light emission was strongly angle dependent, with the spectral emission peak of the device shifting from a wavelength of 680 nm to 500 nm as the angle is varied between 20° and 70° with respect to the normal of the substrate plane. Also, the emitted light shows a high degree of polarization. The observed behaviour can be predicted quantitatively by simulations, which are based on the transfer matrix formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号