首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We characterized the crystallization and luminescence of blue-emitting BaAl2S4 : Eu electroluminescent thin films, prepared using switching electron-beam evaporation with two targets. From the photoluminescence intensity and decay profile of the activated Eu2+ ions in the BaAl2S4 : Eu, we found that the optimum annealing conditions for preparing highly luminescent thin films are a temperature of around 900°C and an annealing time of 2 min. We analyzed the crystalline properties using cross-sectional transmission electron microscope images. Evaluation of the cathodoluminescence spectra in the cross-sections showed that the BaAl2S4 : Eu emitting layer was luminously inhomogeneous on the depth of the layer and that the main luminescent area was near the surface of the emitting layer. We discuss here the relationship between the crystalline and luminescent properties.  相似文献   

2.
Benzothiazole-based blue fluorescent materials N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylbenzenamine (BPPA) and N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA) were synthesized for use in organic light-emitting diodes (OLEDs). Electroluminescent device with a configuration of ITO/NPB/BPPA/BCP/Alq3/LiF/Al showed a maximum brightness of 3760 cd/m2 at 14.4 V with the CIE coordinates of (0.16, 0.16). A current efficiency of 3.01 cd/A and an external quantum efficiency of 2.37% at 20 mA/cm2 were obtained from this device. Molecules derived from BPPA and BPNA with incorporated dicyanomethylidene, which is a functional group for most red fluorescent molecules, were designed, synthesized and characterized to study the red fluorescence properties of the benzothiazole derivatives.  相似文献   

3.
Pyramidal ZnO nanorods with hexagonal structure having c-axis preferred orientation are grown over large area silica substrates by a simple aqueous solution growth technique. The as-grown nanorods were studied using XRD, SEM and UV-vis photoluminescence (PL) spectroscopy for their structural, morphological and optical properties, respectively. Further, the samples have also been annealed under different atmospheric conditions (air, O2, N2 and Zn) to study the defect formation in nanorods. The PL spectra of the as-grown nanorods show narrow-band excitonic emission at 3.03 eV and a broad-band deep-level emission (DLE) related to the defect centers at 2.24 eV. After some mild air annealing at 200 °C, fine structures with peaks having energy separation of ∼100 meV were observed in the DLE band and the same have been attributed to the longitudinal optical (LO) phonon-assisted transitions. However, the annealing of the samples under mild reducing atmospheres of N2 or zinc at 550 °C resulted in significant modifications in the DLE band wherein high intensity green emission with two closely spaced peaks with maxima at 2.5 and 2.7 eV were observed which have been attributed to the VO and Zni defect centers, respectively. The V-I characteristic of the ZnO:Zn nanorods shows enhancement in n-type conductivity compared to other samples. The studies thus suggest that the green emitting ZnO:Zn nanorods can be used as low voltage field emission display (FED) phosphors with nanometer scale resolution.  相似文献   

4.
Tin oxide (SnO2)-layers-doped terbium and europium ions are elaborated by the sol-gel method on silicon substrates. After annealing at 500 °C, the transmission electron microscopy revealed a crystallization of tin oxide.The emission properties of rare-earth in SnO2 are studied systematically against temperature annealing and Tb3+ concentration. The PL spectrum is optimal after annealing at 900 °C and the corresponding photoluminescence (PL) decay is nearly exponential, showing that the sample is homogenous and the PL process can be described by two levels system.The concentration effect shows a quenching of the PL intensity for Tb3+ concentration above 4%. From the investigation of the decay rate from the 7F5 state within terbium concentration, we show that self-quenching is insured by dipole - dipole interaction. The evolutions of both PL intensity and PL lifetime versus temperature are studied. The PL intensity and PL lifetime are enhanced by deposing SnO2:Tb3+ and SnO2:Eu3+ in porous silicon. We show that an efficient excitation transfer from Si nanocrystallites to RE ions can occur.  相似文献   

5.
We present a novel narrow band filter operating in both transmission and reflection for the first time to our knowledge. This proposed structure consists of one unsymmetrical dielectric Fabry-Perot cavity and an ultrathin metal film with n ≈ k. Theoretical analysis shows that both the reflectance and transmittance at the central wavelength are maximums. Due to the high absorption induced by the metal, a good rejection level can be obtained for a wide spectral range. In addition, the changes of peak value ratio Rmax/Tmax is also investigated by adjusting the amount of dielectric stacks. We finally demonstrate the experimental results to verify these designs.  相似文献   

6.
The anomalous fading (AF) of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals in Durango apatite is attributed to tunnelling effects. Electrons from the TL and OSL traps in this material are transferred, via a tunnelling effect, to the recombination sites. The availability of recombination sites for tunnelled electrons is of major importance for the degree of AF rate observed in this material. It is expected that a variation of the number of the electron recombination sites will be reflected in the experimentally measured AF rate. In the present work an investigation of the recombination sites for the tunnelled electrons is attempted by studying the AF effect using a special technique, in which the anomalously faded TL (OSL) is replaced by an equal amount of TL (OSL) induced by a beta dose.  相似文献   

7.
A new phosphor, CaZnGe2O6:Mn2+, which emits red long-lasting phosphorescence centered at 648 nm upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated in this paper. XRD, photoluminescence, thermoluminescence spectra and afterglow decay curve are used to characterize the synthesized phosphor. This phosphor is well crystallized by calcination at 1150 °C for 3 h and possesses excellent performance. The color coordinate values of this phosphor are x=0.64, y=0.26 under 250 nm UV light excitation. Under 250-nm UV light irradiation, this phosphor shows obvious long-lasting phosphorescence that can be seen with the naked eye in the dark clearly after the irradiation source has been removed for more than 3 h. The possible mechanism of this red-light-emitting long-afterglow phosphor is also investigated based on the experiment results.  相似文献   

8.
Temperature dependence of the electroluminescence (EL)-current efficiency of tris-(8-hydroxyquinolinato) aluminum (III) (Alq3)-based organic light-emitting diodes (OLEDs) operated at a constant current density was investigated. The effects of temperature and electric field on photoluminescence (PL) efficiency of Alq3 thin layers were also investigated. On the basis of these results, it was found that the EL efficiency decreases more markedly with increasing temperature than does PL efficiency. The temperature dependence of the EL efficiency can be interpreted in terms of the thermal dissociation of excitons that is assisted by the electric field.  相似文献   

9.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

10.
Double incorporation of Eu3+ and Tb3+ ions into a CaWO4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed.This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.  相似文献   

11.
Three different gases (nitrogen (N2), oxygen (O2) and argon (Ar)) were used as background gases during the growth of pulsed laser deposition (PLD) Y2SiO5:Ce thin films. A Krypton fluoride laser (KrF), 248 nm was used for the PLD of the films on silicon (Si) (1 0 0) substrates. The effect of the background gases on the surface morphology, crystal growth and luminescent properties were investigated. All the experimental parameters, the gas pressure (455 mT), the substrate temperature (600 °C), the pulse frequency (8 Hz), the number of pulses (4000) and the laser fluence (1.6±0.2) J/cm2 were kept constant. The only parameter that was changed during the deposition was the ambient gas species. The surface morphology and average particle sizes were monitored with scanning electron microscopy (SEM) and atomic force microscopy (AFM). X-ray diffraction (XRD) and Auger electron spectroscopy (AES) were used to determine the crystal structure and composition, respectively. Cathodo- (CL) and photoluminescence (PL) were used to measure the luminescent intensities for the different phosphor thin films. The nature of the particles, ablated on the substrate, is related to the collisions between the ejected particles and the ambient gas particles. The CL and PL intensities also depend on the particle sizes. A 144 h (coulomb dose of 1.4×104 C cm−2) electron degradation study on the thin films ablated in the Ar gas environment resulted in a decrease in the main CL intensity peak at 440 nm and to the development of a new very broad luminescent peak spectra ranging from 400 to 850 nm due to the growth of a SiO2 layer on the surface.  相似文献   

12.
Phosphor material BaAl2O4:Eu2+, Dy3+ with varying compositions of Sr substitution were prepared by the solid-state synthesis method. The phosphor compositions were characterized for their phase and crystallinity by XRD, SEM and TEM. Photoluminescence (PL) properties were investigated measuring PL and decay time for varying Ba/Sr compositions. The PL results show the blue shift in the luminescence properties in Sr substituted BaAl2O4:Eu2+, Dy3+ compared to parent BaAl2O4:Eu2+, Dy3+. It is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects. Dy3+ ion doping in the phosphor generates deep traps, which results in long afterglow phosphorescence.  相似文献   

13.
A blue shifted photoluminescent emission in bis(2-(2′-hydroxyl phenyl)benzthiazolate)zinc (II) complex, ZBZT, arises out of the dimeric structure, typical of the localized electron density around the non-bridged ligand in the excited state of the complex. An average decay lifetime of 4.8 and 3.0 ns for the ligand and the complex, respectively indicates an energy transfer from the ligand to the metal. A PL quantum efficiency of about ?ZBZT=0.45 in DMF solution is observed, in comparison to the Alq3, complex, ?Alq3=0.116. Semi empirical ZINDO/S-SCF-CI calculations support the dominance of non-bridged ligand moiety in controlling the photoluminescent properties. An unusually broad white light (FWHM ∼220 nm) electroluminescent emission in the two layer device structure brings out the features of an exciplex formation between the active layer ZBZT/TPD interface, which is studied at different current densities. Such a broadened emission is verified for different thicknesses of the active layer substantiating the role of exciplex formation.  相似文献   

14.
The photoluminescence and low-voltage cathodoluminescence characteristics of BaTi4O9:Pr3+ were investigated. The excitation band of intervalence charge transfer (IVCT) of BaTi4O9:Pr3+ emerged distinctly at 330 nm. The resultant emissions appeared at 606-643 nm corresponding to the 1D23H4 transition. In BaTi4O9:Pr3+, the emission of 3P03H4 transition at 490 nm was not observed. The results were in a pure red color emission.  相似文献   

15.
The effects of the thickness variation, substrate type and annealing on the crystallinity parameters, luminescent and optical properties of the zinc oxide (ZnO) thin films were reported. The thin films were deposited on the glass and the amorphous quartz substrates by the standard RF-magnetron sputtering method using ZnO targets in the argon atmosphere. It has been found that the films deposited on the glass substrate manifest a clear size effect. Both the structural and the optical parameters show clearly minima on their thickness dependences. It has been shown that annealing of the comparatively thick ZnO films leads to increase of the crystallite sizes that are followed by a considerable rise of the cathodoluminescence intensity. The corresponding model of the crystallite growth is proposed.  相似文献   

16.
J.H. Hao  J. Gao 《Applied Surface Science》2006,252(15):5590-5593
The interaction between light and electrons in oxide compounds forms the basis for many interesting and practical effects, which are related to microstructure, energy band, traps, carrier transport and others. Thin films of oxides like WO3, Ga2O3, Y2O3 and SrTiO3 were investigated using various improved optical and luminescent techniques. The home-made systems for optical and luminescent measurements were described in detail. The facilities of photo-Hall and photoconductivity transients have been proven to be powerful tools in the studies, which allow us to perform photoinduced process and relaxation measurements over a wide time range from 10−8 to 104 s. Furthermore, we extended the measurement capabilities of the commercial luminoscope by using an interferometer system with optical fiber and illuminance meter instead of an optical microscope. The cathodoluminescent measurements can be performed at a relative high pressure (20-60 mTorr) compared to ultra-high-vacuum condition of most commercial products. Luminescent characterization was employed as a probe to study doping ions, oxygen vacancies, trap and/or exciton levels in oxide thin films. Our results suggest that various traps and/or excitons in thin films of WO3, Ga2O3 and SrTiO3 involve in the process of photoconductivity relaxation and emission.  相似文献   

17.
In this paper, effects of Fe doping on crystallinity, microstructure and photoluminescence (PL) properties of sol-gel derived SnO2 thin films are reported. It is shown that doping of Fe3+ ions leads to crystallite size reduction and higher strain in SnO2 thin films. The room temperature PL spectra show marked changes in intensity and blue-shift of the emission lines upon Fe doping. These observations have been correlated with structural changes and defect chemistry of Fe doped SnO2 thin films.  相似文献   

18.
When a crystal is fractured impulsively by the impact of a moving piston, then initially the mechanoluminescence (ML) intensity increases quadratically with time, attains a peak value and later on it decreases with time. Considering that the solid state ML and gas discharge ML are excited due to the charging and subsequent production of electric field near the tip of moving cracks, expressions are derived for the transient ML intensity I, time tm and intensity Im corresponding to the peak of ML intensity versus time curve, respectively, the total ML intensity IT, and for fast and slow decays of the ML intensity. It is shown that the decay time for the fast decrease of the ML intensity after tm, is related to the decay time of the strain rate of crystals, and the decay time of slow decay of ML, only observed in phosphorescent crystals, is equal to the decay time of phosphorescence. The value of tm decreases with the increasing impact velocity, Im increases with the increasing impact velocity, and IT initially increases and then it tends to attain a saturation value for higher values of the impact velocity. The values of tm, Im and IT increase linearly with the thickness, area of cross-section and volume of the crystals, respectively. So far as the rise, attainment of ML peak, and fast decay of ML are concerned, there is no any significant difference in the time-evolution of solid state ML, gas discharge ML, and the ML emission consisting of both the solid state ML and gas discharge ML. From the time-dependence of ML, the values of the time-constant for decrease of the surface area created by the movement of a single crack, the time-constant for the decrease of strain rate of crystals, and the decay time of phosphorescence of crystals can be determined. A good agreement is found between the theoretical and experimental results. The importance of fracto ML induced by impulsive deformation of crystals is discussed.  相似文献   

19.
Sol-gel spin-coated ZnO thin films are cooled with different rates after the pre-heat treatment. Atomic force microscopy (AFM), X-ray diffraction (XRD), Raman, and photoluminescence (PL) were carried out to investigate the effects of the cooling rate during pre-heat treatment on structural and optical properties of the ZnO thin films. The ZnO thin films cooled slowly exhibit mountain chain structure while the ones cooled rapidly have smooth surface. The ZnO thin films cooled rapidly have higher c-axis orientation compared to the ones cooled slowly. The narrower and the higher near-band-edge emission (NBE) peaks are observed in the ZnO thin films cooled rapidly.  相似文献   

20.
Although the fabrication of tin disulfide thin films by SILAR method is quiet common, there is, however, no report is available on the growth of SnS thin film using above technique. In the present work, SnS films of 0.20 μm thickness were grown on glass and ITO substrates by SILAR method using SnSO4 and Na2S solution. The as-grown films were smooth and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films. Scanning electron micrograph revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDAX showed that as-grown SnS films were slightly rich in tin component while UV-vis transmission spectra exhibited high absorption in the visible region. The intense and sharp emission peaks at 680 and 825 nm (near band edge emission) dominated the photoluminescence spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号