首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal stability, Raman spectra and blue upconversion luminescence properties of Tm3+/Yb3+-codoped halide modified tellurite glasses have been studied. The results showed that the mixed halide modified tellurite glass (TFCB) has the best thermal stability, the lowest phonon energies and the strongest upconversion emissions. The effect of halide on upconversion intensity is observed and discussed and possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm3+ in TFCB glass may be a potentially useful material for developing upconversion optical devices.  相似文献   

2.
Tm3+-doped oxide-chloride germanate and tellurite glasses have been synthesized by conventional melting method. Intense up-conversion luminescence emissions were simultaneously observed at room temperature in these glasses. The possible up-conversion mechanisms are discussed and estimated. However, in these Tm3+-doped glasses, tellurite glass showed weaker up-conversion emissions than germanate glass, which is inconsistent with the prediction from the difference of maximum phonon energy between tellurite and germanate glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Our results confirm that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency.  相似文献   

3.
Luminescence properties of Eu3+ doped TeO2-PbO-GeO2 glasses containing gold nanoparticles (NPs) were investigated. The emission spectra of the samples exhibited enhancement of Eu3+ luminescence due to the presence of gold NPs. The emission at 614 nm, due to the Eu3+ hypersensitive transition 5D0-7F2, is much influenced by the gold NPs and increases by ≈100% for samples heat-treated at 350 °C during 41 h.  相似文献   

4.
We investigate the energy transfer between Er3+/Ho3+ in tellurite glasses. The main channels of energy transfer between Er3+/Ho3+ are analyzed in detail. The microscopic interaction parameters of resonant and non-resonant (phonon-assisted) energy transfer parameters via Er3+→Ho3+ are calculated. The result shows that the resonant energy transfers Er3+(2H11/2(4S3/2))→Ho3+(5F4(5S2)) and Er3+(4F9/2)→Ho3+(5F5) are very efficient and non-resonant energy transfers Er3+(4I13/2)→Ho3+(5I7) and Er3+(4I11/2)→Ho3+(5I6), which are a phonon-assisted energy transfer process because of energy mismatch are also existed and cannot be neglected.  相似文献   

5.
A new antimony-based glass system (K2O-B2O3-Sb2O3) having low phonon energy (about 600 cm−1) doped with Sm3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm2O3. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the 4G5/26H5/2, 4G5/26H7/2 and 4G5/26H9/2 transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G5/2) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm−1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm−1).  相似文献   

6.
A series of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite (TPZL) glasses pumped by a 980 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Effects of PbO content on the thermal stability, structure and upconversion properties of Tm3+/Yb3+ co-doped TPZL glasses had been investigated. The efficient visible upconversion fluorescences corresponding to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ were observed under 980 nm excitation. The upconversion intensities of blue, red and near infrared emissions in Tm3+/Yb3+ co-doped TPZL glasses were obviously enhanced with increasing PbO content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. Population density in different levels and coefficients of the energy transfer rate CDi (i=2, 4, 6) between Tm3+ and Yb3+ were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD4, and CD6 were determined to be 5.7×10−17, 1.3×10−16 and 8.6×10−17 cm3/s, respectively.  相似文献   

7.
Er3+-doped oxychloride germanate glasses have been synthesized by conventional melting and quenching method. Structural and thermal stability properties were obtained based on the Raman spectra and differential thermal analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of green (525 and 546 nm) emissions increases significantly, while the red (657 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the green emissions than the red emission in oxychloride germanate glasses. The possible upconversion luminescence mechanisms has also been estimated and discussed.  相似文献   

8.
Photoluminescence properties of Bi3+ co-doped Eu3+ containing zinc borate glasses have been investigated and the results are reported here. Bright red emission due to a dominant electric dipole transition 5D07F2 of the Eu3+ ions has been observed from these glasses. The nature of Stark components from the measured fluorescence transitions of Eu3+ ions reveal that the rare earth ions could take the lattice sites of Cs or lower point symmetry in the zinc borate glass hosts. The significant enhancement of Eu3+ emission intensity by 346 nm excitation (1S03P1 of Bi3+ ions) elucidates the sensitization effect of co-dopant. The energy transfer mechanism between sensitizer (Bi3+) and activator (Eu3+) ions has been explained.  相似文献   

9.
Tm3+/Yb3+共掺氧卤碲酸盐玻璃上转换发光研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了Tm3+/Yb3+共掺氧卤碲酸盐玻璃的上转换发光光谱,分析了TmO3量对Tm3+/Yb3+共掺氧卤碲酸盐玻璃上转换发光的影响机理.结果表明:在Tm3+/Yb3+共掺氧卤碲酸盐玻璃的上转换发光中,Tm3+存在较强的浓度猝灭效应.随Tm2O3含量增加,Tm3+的上转换蓝光和红光强度先增加,后降低,在0.1 mol% Tm2O3达到最大.该结果有助于进一步提高Tm3+的上转换发光效率.  相似文献   

10.
Tm3+/Yb3+-codoped germanate-niobic (GN) and germanium-bismuth (GB) glasses have been synthesized by conventional melting and quenching method. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G43H6 and 1G43H4, respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. GN glass showed a weaker up-conversion emission than GB glass, which is inconsistent with the prediction from the difference of maximum phonon energy between GN and GB glasses. In this paper, Raman spectroscopy was employed to investigate the origin of the difference in up-conversion luminescence in the two glasses. Compared with phonon side-band spectroscopy, Raman spectroscopy extracts more information including both phonon energy and phonon density. For the first time, our results reveal that, besides the maximum phonon energy, the phonon density of host glasses is also an important factor in determining the up-conversion efficiency.  相似文献   

11.
In this paper, we report the near-infrared luminescence from the Er3+/Yb3+, Tm3+/Yb3+, Er3+/Tm3+ and Nd3+ ions-doped TeO2-ZnO-B2O3-Li2O-Na2O glasses for optical amplification. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) profiles of the host glass matrix have been carried out. From the DSC thermogram, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The near-infrared spectra of Er3+/Yb3+, Tm3+/Yb3+, Er3+/Tm3+ and Nd3+ ions-doped glasses have shown full-width at half-maxima (FWHM) around 58, 127, 87 and 35 nm, respectively. These glasses with better thermal stability and broad near-infrared emissions should have potential applications in broadly tunable laser sources and broadband optical amplification at low-loss telecommunication windows.  相似文献   

12.
A simulation of erbium-doped glass systems, which provides population density for the excited states involved in the 1.5 μm and also for 2.7 μm emissions when pumped around 980 nm, is presented. To describe the diode pump laser processes, a theoretical model based in a coupled system of differential rate equations was developed. The approach used and the obtained spectroscopic parameters are discussed. The materials under study are two oxide glasses, lead fluoroborate (PbO-PbF2-B2O3), and heavy metal oxide (Bi2O3-PbO-Ga2O3) and a fluoride glass (ZrF4-BaF2-LaF3-AlF3-NaF), all of them doped with Er3+.  相似文献   

13.
Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+-codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (∼750 cm−1) can be used as potential host material for upconversion lasers.  相似文献   

14.
Energy transfer has been studied from Er3+ to Eu3+ ions on excitation with NIR photons (796 and 980 nm) with and without Yb3+ ions. It is found that in one case the presence of Yb3+ enhances the fluorescence yield (980 nm excitation) whereas in the other case it quenches (796 nm excitation). Energy transfer from Er3+ ion's levels 4S3/2 and 2H11/2 is verified by decay curve analysis in both the cases. The nature of interaction between the donor (Er) and the acceptor (Eu) ions is found to be dipole-dipole. The energy transfer parameters viz. transfer probability, critical distance etc. have been calculated.  相似文献   

15.
The efficiency of erbium three-micron laser (laser transition 4I11/24I13/2) depends essentially on the ratio of the parameters of active energy transfer upconversion (ETU) from the laser levels. The parameters of both ETU processes can be obtained from the analysis of the shape of the kinetics of the 4I11/2 level in concentrated Er:YAG crystals, under short pulse pumping. Mathematical modeling is used to evaluate the sensitivity of the method and to estimate the errors which can be introduced by the inhomogeneous pumping and accidental impurities. It was found that the ratio of the parameters corresponding to the ETU from the laser levels is less sensitive to the pumping inhomogeneities than that corresponding to the lower laser level. A reduction of this ratio with increasing erbium concentration is observed.  相似文献   

16.
The luminescence properties of Er3+ doped alkali tellurite [ TeO2-M2O (M=Li, Na and K)] glasses are investigated. Infrared to visible upconversion emissions are observed at 410, 525, 550 and 658 nm using 797 nm excitation. These bands are assigned to the 2H9/2  →4I15/2, 2H11/2  →4I15/2, 4S3/2  →4I15/2, 4F9/2  →4I15/2 transitions of Er3+ respectively. Detailed study reveals that the 2H9/2  →4I15/2 transition at 410 nm involves a three-step process while the other transitions involve two-steps. Excitation with 532 nm radiation gives additional bands at 380, 404, 475 and 843 nm wavelengths due to the 4G11/2  →4I15/2, 2P3/2  →4I13/2, 2P3/2  →4I11/2, and 4S3/2  →4I13/2 transitions, respectively, along with the bands observed on NIR excitation. The fluorescence yield is found to be largest for the TeO2-Na2O glass. The lifetime of the 4S3/2 level has been measured for all the three cases and used to explain the upconversion mechanisms. The fluorescence intensity ratio corresponding to the two thermally coupled levels (2H11/2, 4S3/2) has been used to estimate the temperature of the glass. It is observed that the temperature sensing capacity of TeO2-Li2O glass is better than the other two glasses.  相似文献   

17.
The solubility and uniform distribution of lanthanide complexes in sol-gel glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide β-diketonate complexes (Ln=Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(III) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured.  相似文献   

18.
Structural and up-conversion fluorescence properties in ytterbium-sensitized thulium-doped novel oxychloride bismuth-germanium glass have been studied. The structure of novel bismuth-germanium glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wave numbers. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the up-conversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G43H6 and 1G43H4, respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. This novel oxychloride bismuth-germanium glass with low maximum phonon energy (∼730 cm−1) can be used as potential host material for up-conversion lasers.  相似文献   

19.
Electronic transitions of Pr3+ ions in Ga-Ge-Sb-Se glasses corresponding to emissions in the infrared region were studied by means of absorption and emission spectroscopies and fluorescence lifetimes measurements. Transition probabilities, radiative lifetimes, branching ratios, and quantum efficiencies of most of the emission transitions including the infrared ones occurring around 1.3, 1.7, and 2.4 μm were estimated based on a standard Judd-Ofelt analysis.  相似文献   

20.
Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Ω6 and Sed/(Sed+Smd) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Ω6 as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of 4F9/2 and 4S3/2 states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号