首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Mechanical effects have mostly been neglected so far in phase field tumour models that are based on a Cahn–Hilliard approach. In this paper we study a macroscopic mechanical model for tumour growth in which cell–cell adhesion effects are taken into account with the help of a Ginzburg–Landau type energy. In the overall model an equation of Cahn–Hilliard type is coupled to the system of linear elasticity and a reaction–diffusion equation for a nutrient concentration. The highly non-linear coupling between a fourth-order Cahn–Hilliard equation and the quasi-static elasticity system lead to new challenges which cannot be dealt within a gradient flow setting which was the method of choice for other elastic Cahn–Hilliard systems. We show existence, uniqueness and regularity results. In addition, several continuous dependence results with respect to different topologies are shown. Some of these results give uniqueness for weak solutions and other results will be helpful for optimal control problems.  相似文献   

2.
A well-known diffuse interface model consists of the Navier–Stokes equations nonlinearly coupled with a convective Cahn–Hilliard type equation. This system describes the evolution of an incompressible isothermal mixture of binary fluids and it has been investigated by many authors. Here we consider a variant of this model where the standard Cahn–Hilliard equation is replaced by its nonlocal version. More precisely, the gradient term in the free energy functional is replaced by a spatial convolution operator acting on the order parameter φ, while the potential F may have any polynomial growth. Therefore the coupling with the Navier–Stokes equations is difficult to handle even in two spatial dimensions because of the lack of regularity of φ. We establish the global existence of a weak solution. In the two-dimensional case we also prove that such a solution satisfies the energy identity and a dissipative estimate, provided that F fulfills a suitable coercivity condition.  相似文献   

3.
We study two novel decoupled energy‐law preserving and mass‐conservative numerical schemes for solving the Cahn‐Hilliard‐Darcy system which models two‐phase flow in porous medium or in a Hele–Shaw cell. In the first scheme, the velocity in the Cahn–Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn–Hilliard equation. In the second scheme, an intermediate velocity is used in the Cahn–Hilliard equation which allows for the decoupling. We show that the first scheme preserves a discrete energy law with a time‐step constraint, while the second scheme satisfies an energy law without any constraint and is unconditionally stable. Ample numerical experiments are performed to gauge the efficiency and robustness of our scheme. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 936–954, 2016  相似文献   

4.
The Cahn–Hilliard–Hele–Shaw system is a fundamental diffuse-interface model for an incompressible binary fluid confined in a Hele–Shaw cell. It consists of a convective Cahn–Hilliard equation in which the velocity u is subject to a Korteweg force through Darcy's equation. In this paper, we aim to investigate the system with a physically relevant potential (i.e., of logarithmic type). This choice ensures that the (relative) concentration difference φ takes values within the admissible range. To the best of our knowledge, essentially all the available contributions in the literature are concerned with a regular approximation of the singular potential. Here we first prove the existence of a global weak solution with finite energy that satisfies an energy dissipative property. Then, in dimension two, we further obtain the uniqueness and regularity of global weak solutions. In particular, we show that any two-dimensional weak solution satisfies the so-called strict separation property, namely, if φ is not a pure state at some initial time, then it stays instantaneously away from the pure states. When the spatial dimension is three, we prove the existence of a unique global strong solution, provided that the initial datum is regular enough and sufficiently close to any local minimizer of the free energy. This also yields the local Lyapunov stability of the local minimizer itself. Finally, we prove that under suitable assumptions any global solution converges to a single equilibrium as time goes to infinity.  相似文献   

5.
The aim of this paper is to study the metastable properties of the solutions to a hyperbolic relaxation of the classic Cahn‐Hilliard equation in one‐space dimension, subject to either Neumann or Dirichlet boundary conditions. To perform this goal, we make use of an “energy approach," already proposed for various evolution PDEs, including the Allen‐Cahn and the Cahn‐Hilliard equations. In particular, we shall prove that certain solutions maintain a Ntransition layer structure for a very long time, thus proving their metastable dynamics. More precisely, we will show that, for an exponentially long time, such solutions are very close to piecewise constant functions assuming only the minimal points of the potential, with a finitely number of transition layers, which move with an exponentially small velocity.  相似文献   

6.
Comparing with the classical local gradient flow and phase field models, the nonlocal models such as nonlocal Cahn–Hilliard equations equipped with nonlocal diffusion operator can describe more practical phenomena for modeling phase transitions. In this paper, we construct an accurate and efficient scalar auxiliary variable approach for the nonlocal Cahn–Hilliard equation with general nonlinear potential. The first contribution is that we have proved the unconditional energy stability for nonlocal Cahn–Hilliard model and its semi‐discrete schemes carefully and rigorously. Second, what we need to focus on is that the nonlocality of the nonlocal diffusion term will lead the stiffness matrix to be almost full matrix which generates huge computational work and memory requirement. For spatial discretizaion by finite difference method, we find that the discretizaition for nonlocal operator will lead to a block‐Toeplitz–Toeplitz‐block matrix by applying four transformation operators. Based on this special structure, we present a fast procedure to reduce the computational work and memory requirement. Finally, several numerical simulations are demonstrated to verify the accuracy and efficiency of our proposed schemes.  相似文献   

7.
In this paper, we focus on a diffuse interface model named by Hele–Shaw–Cahn–Hilliard system, which describes a two‐phase Hele–Shaw flow with matched densities and arbitrary viscosity contrast in a bounded domain. The diffuse interface thickness is measured by ? , and the mobility coefficient (the diffusional Peclet number) is ? α . We will prove rigorously that the global weak solutions of the Hele–Shaw–Cahn–Hilliard system converge to a varifold solution of the sharp interface model as ? →0 in the case of 0≤α  < 1. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this paper is to study the well-posedness and the existence of global attractors for a family of Cahn–Hilliard equations with a mobility depending on the chemical potential. Such models arise from generalizations of the (classical) Cahn–Hilliard equation due to Gurtin.  相似文献   

9.
In this article, we analyze a Crank‐Nicolson‐type finite difference scheme for the nonlinear evolutionary Cahn‐Hilliard equation. We prove existence, uniqueness and convergence of the difference solution. An iterative algorithm for the difference scheme is given and its convergence is proved. A linearized difference scheme is presented, which is also second‐order convergent. Finally a new difference method possess a Lyapunov function is presented. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 437–455, 2007  相似文献   

10.
We propose an original scheme for the time discretization of a triphasic Cahn–Hilliard/Navier–Stokes model. This scheme allows an uncoupled resolution of the discrete Cahn–Hilliard and Navier‐Stokes system, which is unconditionally stable and preserves, at the discrete level, the main properties of the continuous model. The existence of discrete solutions is proved, and a convergence study is performed in the case where the densities of the three phases are the same. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq. 2013  相似文献   

11.
In this paper, we prove the classical solvability of a nonlinear 1‐D system of hyperbolic–parabolic type arising as a model of phase separation in deformable binary alloys. The system is governed by the nonstationary elasticity equation coupled with the Cahn–Hilliard equation. The existence proof is based on the application of the Leray–Schauder fixed point theorem and standard energy methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
In one spatial dimension, the metastable dynamics and coarsening process of an n -layer pattern of internal layers is studied for the Cahn–Hilliard equation, the viscous Cahn–Hilliard equation, and the constrained Allen–Cahn equation. These models from the continuum theory of phase transitions provide a caricature of the physical process of the phase separation of a binary alloy. A homotopy parameter is used to encapsulate these three phase separation models into one parameter-dependent model. By studying a differential-algebraic system of ordinary differential equations describing the locations of the internal layers for a metastable pattern for this parameter-dependent model, we are able to provide detailed comparisons between the internal layer dynamics for the three models. Layer collapse events are studied in detail, and the analytical theory is supplemented by numerical results showing the different behaviors for the different models. Finally, an asymptotic-numerical algorithm, based on our asymptotic information of layer collapse events and the conservation of mass condition, is devised to characterize the entire coarsening process for each of these models. Numerical realizations of this algorithm are shown.  相似文献   

13.
We give a detailed study of the infinite‐energy solutions of the Cahn–Hilliard equation in the 3D cylindrical domains in uniformly local phase space. In particular, we establish the well‐posedness and dissipativity for the case of regular potentials of arbitrary polynomial growth as well as for the case of sufficiently strong singular potentials. For these cases, we prove the further regularity of solutions and the existence of a global attractor. For the cases where we have failed to prove the uniqueness (e.g., for the logarithmic potentials), we establish the existence of the trajectory attractor and study its properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we prove the existence and uniqueness of a global in time, regular solution to the Cahn–Hilliard system coupled with viscoelasticity. The system arises as a model, regularized by a viscous damping, of phase separation process in a binary deformable alloy quenched below a critical temperature. The key tools in the analysis are estimates of absorbing type with the property of exponentially time‐decreasing contribution of the initial data. Such estimates allow not only to prolong the solution step by step on the infinite time interval but also to conclude the existence of an absorbing set. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
We are concerned with a class of Cahn–Hilliard type stochastic interacting systems with stepping-stone noises. We first establish approximating SPDEs for them since the diffusion coefficients are not Lipschitz. And then we obtain the existence of weak mild solution to this system by solving a martingale problem.  相似文献   

16.
We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier–Stokes equations coupled with a convective nonlocal Cahn–Hilliard equation. Several results were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the weak–strong uniqueness in the case of viscosity depending on the order parameter, provided that either the mobility is constant and the potential is regular or the mobility is degenerate and the potential is singular. In the case of constant viscosity, on account of the uniqueness results, we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor. The latter is established even in the case of variable viscosity, constant mobility and regular potential.  相似文献   

17.
In this paper, an asymptotic analysis of the (non‐conserved) Penrose–Fife phase field system for two vanishing time relaxation parameters ε and δ is developed, in analogy with the similar analyses for the phase field model proposed by G. Caginalp (Arch. Rational Mech. Anal. 1986; 92 :205–245), which were carried out by Rossi and Stoth (Adv. Math. Sci. Appl. 2003; 13 :249–271; Quart. Appl. Math. 1995; 53 :695–700). Although formally the singular limits for ε ↓ 0 and for ε and δ ↓ 0 are, respectively, the viscous Cahn–Hilliard equation and the Cahn–Hilliard equation, it turns out that the Penrose–Fife system is indeed a bad approximation for these equations. Therefore, we consider an alternative approximating phase field system, which could be viewed as a generalization of the classical Penrose–Fife phase field system, featuring a double non‐linearity given by two maximal monotone graphs. A well‐posedness result is proved for such a system, and it is shown that the solutions converge to the unique solution of the viscous Cahn–Hilliard equation as ε ↓ 0, and of the Cahn–Hilliard equation as ε ↓ 0 and δ ↓ 0. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
We consider in this Note models of generalized Cahn—Hilliard equations that take into account the effects of internal microforces and introduced by M. Gurtin in [6] coupled with the Navier equation of linear elasticity (under the small deformations assumption) for which we obtain the existence and uniqueness of weak solutions. When the deformations are infinitesimal and when the displacement gradient is small, in which case we can neglect the evolutive term in the Navier equation, we can furthermore prove the existence of finite-dimensional attractors by noting that the variational formulation can be uncoupled. It is important to note here that these results cannot in general be obtained for the coupled (classical) Cahn—Hilliard equations.  相似文献   

19.
This article studies the problem for optimal control of the convective Cahn–Hilliard equation in one-space dimension. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.  相似文献   

20.
This paper is concerned with the existence, uniqueness and attractability of time periodic solutions of a Cahn–Hilliard type equation with periodic gradient‐dependent potentials and sources. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号