首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a planar system of ordinary differential equations is considered, which is a modified Leslie‐Gower model, considering a Beddington‐DeAngelis functional response. It generates a complex dynamics of the predator‐prey interactions according to the associated parameters. From the system obtained, we characterize all the equilibria and its local behavior, and the existence of a trapping set is proved. We describe different types of bifurcations (such as Hopf, Bogdanov‐Takens, and homoclinic bifurcation), and the existence of limit cycles is shown. Analytic proofs are provided for all results. Ecological implications and a set of numerical simulations supporting the mathematical results are also presented.  相似文献   

2.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
A theoretical eco‐epidemiological model of a prey–predator interaction system with disease in prey species is studied. Predator consumes both susceptible and infected prey population, but predator also feeds preferentially on many numerous species, which are over represented in the predator's diet. Equilibrium points of the system are determined, and the dynamic behaviour of the system is investigated around equilibrium points. Death rate of predator species is considered as a bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighbourhood of the coexisting equilibria. Numerical simulations are carried out to support the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A diffusive predator–prey model with predator saturation and competition response subject to homogeneous Neumann boundary conditions is considered in this paper. We find that the spatially homogeneous and non‐homogeneous periodic solutions through all parameters of the system are spatially homogeneous. To verify our theoretical results, some numerical simulations are also carried out. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider a delayed Hassell–Varley‐type predator–prey model with harvesting on prey. By means of Mawhin's continuation theorem of coincidence degree theory, some new sufficient conditions are obtained for the existence of at least two positive almost periodic solutions for the aforementioned model. To the best of the author's knowledge, so far, the result of this paper is completely new. An example is employed to illustrate the result of this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The consumer–resource relationships are among the most fundamental of all ecological relationships and have been the focus of ecology since its beginnings. Usually are described by nonlinear differential equation systems, putting the emphasis in the effect of antipredator behavior (APB) by the prey; nevertheless, a minor quantity of articles has considered the social behavior of predators. In this work, two predator–prey models derived from the Volterra model are analyzed, in which the equation of predators is modified considering cooperation or collaboration among predators. It is well known that competition among predators produces a stabilizing effect on system describing the model, since there exists a wide set in the parameter space where the system has a unique equilibrium point in the phase plane, which is globally asymptotically stable. Meanwhile, the cooperation can originate more complex and unusual dynamics. As we will show, it is possible to prove that for certain subset of parameter values the predator population sizes tend to infinite when the prey population goes to extinct. This apparently contradicts the idea of a realistic model, when it is implicitly assumed that the predators are specialist, ie, the prey is its unique source of food. However, this could be a desirable effect when the prey constitutes a plague. To reinforce the analytical result, numerical simulations are presented.  相似文献   

8.
The dynamics of a reaction‐diffusion predator‐prey model with hyperbolic mortality and Holling type II response effect is considered. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and nonhomogeneous periodic solutions through all parameters of the system which are spatially homogeneous. To verify our theoretical results, some numerical simulations are also presented. © 2015 Wiley Periodicals, Inc. Complexity 21: 34–43, 2016  相似文献   

9.
The present paper deals with the problem of a classical predator–prey system with infection of prey population. A classical predator–prey system is split into three groups, namely susceptible prey, infected prey and predator. The relative removal rate of the susceptible prey due to infection is worked out. We observe the dynamical behaviour of this system around each of the equilibria and point out the exchange of stability. It is shown that local asymptotic stability of the system around the positive interior equilibrium ensures its global asymptotic stability. We prove that there is always a Hopf bifurcation for increasing transmission rate. To substantiate the analytical findings, numerical experiments have been carried out for hypothetical set of parameter values. Our analysis shows that there is a threshold level of infection below which all the three species will persist and above which the disease will be epidemic. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Since population behaviors possess the characteristic of history memory, we, in this paper, introduce time fractional‐order derivatives into a diffusive Gause‐type predator‐prey model, which is time fractional‐order reaction‐diffusion equations and a generalized form of its corresponding first‐derivative model. For this kind of model, we prove the existence and uniqueness of a global positive solution by using the theory of evolution equations and the comparison principle of time fractional‐order partial differential equations. Besides, we obtain the stability and Hopf bifurcation of the Gause‐type predator‐prey model in the forms of the time fractional‐order ordinary equations and of the time fractional‐order reaction‐diffusion equations, respectively. Our results show that the stable region of the parameters in these 2 models can be enlarged by the time fractional‐order derivatives. Some numerical simulations are made to verify our results.  相似文献   

11.
In this paper, a ratio‐dependent predator–prey model with stage structure and harvesting is investigated. Mathematical analyses of the model equations with regard to boundedness of solutions, nature of equilibria, permanence and stability are performed. By constructing appropriate Lyapunov functions, a set of easily verifiable sufficient conditions are obtained for the global asymptotic stability of nonnegative equilibria of the model. The existence possibilities of bioeconomic equilibria have been examined. An optimal harvesting policy is also given by using Pontryagin's maximal principle. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
We study pattern formations in a predator–prey model with prey‐taxis. It is proved that a branch of nonconstant solutions can bifurcate from the positive equilibrium only when the chemotactic is repulsive. Furthermore, we find the stable bifurcating solutions near the bifurcation point under suitable conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we investigate the dynamics of a time‐delay ratio‐dependent predator‐prey model with stage structure for the predator. This predator‐prey system conforms to the realistically biological environment. The existence and stability of the positive equilibrium are thoroughly analyzed, and the sufficient and necessary conditions for the stability and instability of the positive equilibrium are obtained for the case without delay. Then, the influence of delay on the dynamics of the system is investigated using the geometric criterion developed by Beretta and Kuang. 26 We show that the positive steady state can be destabilized through a Hopf bifurcation and there exist stability switches under some conditions. The formulas determining the direction and the stability of Hopf bifurcations are explicitly derived by using the center manifold reduction and normal form theory. Finally, some numerical simulations are performed to illustrate and expand our theoretical results.  相似文献   

14.
A predator–prey model with transmissible disease in the prey species is proposed and analysed. The essential mathematical features are analysed with the help of equilibrium, local and global stability analyses and bifurcation theory. We find four possible equilibria. One is where the populations are extinct. Another is where the disease and predator populations are extinct and we find conditions for global stability of this. A third is where both types of prey exist but no predators. The fourth has all three types of individuals present and we find conditions for limit cycles to arise by Hopf bifurcation. Experimental data simulation and brief discussion conclude the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The goal of this work is to examine the global behavior of a Gause‐type predator–prey model in which two aspects have been taken into account: (i) the functional response is Holling type III; and (ii) the prey growth is affected by a weak Allee effect. Here, it is proved that the origin of the system is a saddle point and the existence of two limit cycles surround a stable positive equilibrium point: the innermost unstable and the outermost stable, just like with the strong Allee effect. Then, for determined parameter constraints, the trajectories can have different ω ? limit sets. The coexistence of a stable limit cycle and a stable positive equilibrium point is an important fact for ecologists to be aware of the kind of bistability shown here. So, these models are undoubtedly rather sensitive to disturbances and require careful management in applied contexts of conservation and fisheries. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with a non‐selective harvesting predator–prey model with Hassell–Varley type functional response and impulsive effects. By using the fixed point theory based on monotone operator, some simple conditions are obtained for the existence of at least one positive periodic solution of the model. The existence result of this paper implies that the functional response on prey does not influence the existence of positive periodic solution of the model, which completes some results given in recent years. Further, by applying the comparison theorem in impulsive differential equations and constructing a suitable Lyapunov functional, the permanence and global attractivity of the model are also investigated. The main results in this paper extend, complement, and improve the previously known result. And some examples and numerical simulations are given to illustrate the feasibility and effectiveness of the main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the global dynamics of a Holling‐Tanner predator‐prey model with periodic coefficients. We establish sufficient conditions for the existence of a positive solution and its global asymptotic stability. The stability conditions are first given in average form and afterward as pointwise estimates. In the autonomous case, the previous criteria lead to a known result.  相似文献   

18.
We prove that the Volterra‐Gause system of predator‐prey type exhibits 2 kinds of zero‐Hopf bifurcations for convenient values of their parameters. In the first, 1 periodic solution bifurcates from a zero‐Hopf equilibrium, and in the second, 4 periodic solutions bifurcate from another zero‐Hopf equilibrium. This study is done using the averaging theory of second order.  相似文献   

19.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the existence of traveling waves to a predator–prey model with a spatiotemporal delay. By analyzing the corresponding characteristic equations, the local stability of a positive steady state and each of boundary steady states are established, and the existence of Hopf bifurcation at the positive steady state is also discussed. By constructing a pair of upper–lower solutions and by using the cross‐iteration method as well as the Schauder's fixed‐point theorem, the existence of a traveling wave solution connecting the semi‐trivial steady state and the positive steady state is proved. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号