首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A H1‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (n + 1) × (n + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.  相似文献   

2.
In this paper, we propose a robust semi-explicit difference scheme for solving the Kuramoto–Tsuzuki equation with homogeneous boundary conditions. Because the prior estimate in L-norm of the numerical solutions is very hard to obtain directly, the proofs of convergence and stability are difficult for the difference scheme. In this paper, we first prove the second-order convergence in L2-norm of the difference scheme by an induction argument, then obtain the estimate in L-norm of the numerical solutions. Furthermore, based on the estimate in L-norm, we prove that the scheme is also convergent with second order in L-norm. Numerical examples verify the correction of the theoretical analysis.  相似文献   

3.
I. Stratis In this work, we investigate the analyticity properties of solutions of Kuramoto–Sivashinsky‐type equations in two spatial dimensions, with periodic initial data. In order to do this, we explore the applicability in three‐dimensional models of a spectral method, which was developed by the authors for the one‐dimensional Kuramoto–Sivashinsky equation. We introduce a criterion, which provides a sufficient condition for analyticity of a periodic function uC, involving the rate of growth of ?nu, in suitable norms, as n tends to infinity. This criterion allows us to establish spatial analyticity for the solutions of a variety of systems, including Topper–Kawahara, Frenkel–Indireshkumar, and Coward–Hall equations and their dispersively modified versions, once we assume that these systems possess global attractors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
利用由三角级数和幂级数复合构成的函数项级数的有关性质,得到了一类变系数非齐次调和方程边值问题的级数解.使变系数非齐次调和方程边值问题的求解有了新的进展.  相似文献   

5.
In this article, first, we establish some compact finite difference schemes of fourth‐order for 1D nonlinear Kuramoto–Tsuzuki equation with Neumann boundary conditions in two boundary points. Then, we provide numerical analysis for one nonlinear compact scheme by transforming the nonlinear compact scheme into matrix form. And using some novel techniques on the specific matrix emerged in this kind of boundary conditions, we obtain the priori estimates and prove the convergence in norm. Next, we analyze the convergence and stability for one of the linearized compact schemes. To obtain the maximum estimate of the numerical solutions of the linearized compact scheme, we use the mathematical induction method. The treatment is that the convergence in norm is obtained as well as the maximum estimate, further the convergence in norm. Finally, numerical experiments demonstrate the theoretical results and show that one of the linearized compact schemes is more accurate, efficient and robust than the others and the previous. It is worthwhile that the compact difference methods presented here can be extended to 2D case. As an example, we present one nonlinear compact scheme for 2D Ginzburg–Landau equation and numerical tests show that the method is accurate and effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2080–2109, 2015  相似文献   

6.
This paper is concerned with the solvability of a boundary value problem for a nonhomogeneous biharmonic equation. The boundary data is determined by a differential operator of fractional order in the Riemann-Liouville sense. The considered problem is a generalization of the known Dirichlet and Neumann problems.  相似文献   

7.
The aim of this paper is to draw attention to an interesting semilinear parabolic equation that arose when describing the chaotic dynamics of a polymer molecule in a liquid. This equation is nonlocal in time and contains a term, called the interaction potential, that depends on the time‐integral of the solution over the entire interval of solving the problem. In fact, one needs to know the “future” in order to determine the coefficient in this term, that is, the causality principle is violated. The existence of a weak solution of the initial boundary value problem is proven. The interaction potential satisfies fairly general conditions and can have arbitrary growth at infinity. The uniqueness of this solution is established with restrictions on the length of the considered time interval.  相似文献   

8.
We study the initial boundary value problem resulting from the linearization of the equations of ideal incompressible magnetohydrodynamics and the jump conditions on the hypersurface of tangential discontinuity (current–vortex sheet) about an unsteady piecewise smooth solution. Under some assumptions on the unperturbed flow, we prove an energy a priori estimate for the linearized problem. Since the so‐called loss of derivatives in the normal direction to the boundary takes place even for the constant coefficients linearized problem, for the variable coefficients problem and non‐planar current–vortex sheets the natural functional setting is provided by the anisotropic weighted Sobolev space W21,σ. The result of this paper is a necessary step to prove the local in time existence of solutions of the original non‐linear free boundary value problem. The uniqueness of the regular solution of this problem follows already from the a priori estimate we obtain for the linearized problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
The Bitsadze–Samarskii type nonlocal boundary value problem for the differential equation in a Hilbert space H with the self‐adjoint positive definite operator A with a closed domain D(A) ? H is considered. Here, f(t) be a given abstract continuous function defined on [0,1] with values in H, φ and ψ be the elements of D(A), and λj are the numbers from the set [0,1]. The well‐posedness of the problem in Hölder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well‐posedness of this difference scheme in difference analogue of Hölder spaces is established. For applications, the stability, the almost coercivity, and the coercivity estimates for the solutions of difference schemes for elliptic equations are obtained. Mathematical Methods in the Applied Sciences. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In the paper we study a boundary value problem for a hyperbolic equation with two independent variables; this problem is a generalization of the well-known Darboux problem. Translated fromMatematicheskie Zametki, Vol. 65, No. 2, pp. 294–306, February, 1999.  相似文献   

13.
A boundary value problem for the Bitsadze equation
$\frac{{\partial ^2 }}{{\partial \bar z^2 }}u(x,y) \equiv \frac{1}{4}\left( {\frac{\partial }{{\partial x}} + i\frac{\partial }{{\partial y}}} \right)^2 u(x,y) = 0$
in the interior of the unit disc is considered. It is proved that the problem is Noetherian and its index is calculated, and solvability conditions for the non-homogeneous problem are proposed. Some solutions of the homogeneous problem are explicitely found.
  相似文献   

14.
The solution w to the Hilbert boundary value problem ?w/?z = F(z, w,?w/?z) in D Re(a+ib) w = g on ?D has so far been solved in the space of Holder-continuously differentiable functions C1α(D). It is shown here that theproblem has a unique solution in the more general Sobolev space W1,p (D), 2 < p < ∞, provided that the boundaryfunction g is allowed to belong to the Slobodecky space Ws,p (?D), S = 1 ? 1/P.  相似文献   

15.
In this paper, we consider the initial boundary value problem for generalized logarithmic improved Boussinesq equation. By using the Galerkin method, logarithmic Sobolev inequality, logarithmic Gronwall inequality, and compactness theorem, we show the existence of global weak solution to the problem. By potential well theory, we show the norm of the solution will grow up as an exponential function as time goes to infinity under some suitable conditions. Furthermore, for the generalized logarithmic improved Boussinesq equation with damped term, we obtain the decay estimate of the energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
In this article, we study the analyticity properties of solutions of the nonlocal Kuramoto‐Sivashinsky equations, defined on 2π‐periodic intervals, where ν is a positive constant; μ is a nonnegative constant; p is an arbitrary but fixed real number in the interval [3,4); and is an operator defined by its symbol in Fourier space, with be the Hilbert transform. We establish spatial analyticity in a strip around the real axis for the solutions of such equations, which possess universal attractors. Also, a lower bound for the width of the strip of analyticity is obtained.  相似文献   

19.
20.
A comparison principle for solutions of the first initial boundary value problem for the generalized Boussinesque equation with a nonlinear sourceu t-Δψ(u)-Δu t+q(u)=0 is established. By using this comparison principle, we prove new existence and nonexistence theorems for solutions of the first initial boundary value problem in the case of power-law functions ψ (ξ) andq (ξ). Translated fromMathematicheskie Zametki, Vol. 65, No. 1, pp. 70–75, January, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号