首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier–Stokes equations with a slip boundary condition. We establish the local well‐posedness of the strong solutions for initial boundary value problems for such systems. Furthermore, the vanishing viscosity limit process is established, and a strong rate of convergence is obtained as the boundary of the domain is flat. In addition, it is needed to add some additional condition for density to match well the boundary condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper we study the Navier–Stokes boundary‐initial value problem in the exterior of a rotating obstacle, in two and three spatial dimensions. We prove the local in time existence and uniqueness of strong solutions. Moreover, we show that the solutions are global in time, in two spatial dimensions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

4.
In this paper, we study the existence of weak solutions when n?4 of the mixed problem for the Navier–Stokes equations defined in a bounded domain Q using approximation by a system of Cauchy–Kowaleska type. Periodical solutions are also analyzed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We investigate the uniform regularity and vanishing viscosity limit for the incompressible chemotaxis‐Navier‐Stokes system with Navier boundary condition for velocity field and Neumann boundary condition for cell density and chemical concentration in a 3D bounded domain. It is shown that there exists a unique strong solution of the incompressible chemotaxis‐Navier‐Stokes system in a finite time interval, which is independent of the viscosity coefficient. Moreover, this solution is uniformly bounded in a conormal Sobolev space, which allows us to take the vanishing viscosity limit to obtain the incompressible chemotaxis‐Euler system.  相似文献   

6.
In this per, we consider a special class of initial data for the three‐dimensional incompressible Navier–Stokes equations with gravity. We show that, under such conditions, the incompressible Navier‐Stokes equations with gravity are globally well posed, and the velocity minus gravity term has finite energy. The important features of the initial data is that the velocity fields minus gravity term are almost parallel to the corresponding vorticity fields in a very large space domain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this study the 2D Navier–Stokes equations are used to obtain a new self-similar equation. The latter equation, subject to appropriate boundary conditions and volume discharge, describes the pressure distribution and velocity field of a plane free jet.  相似文献   

8.
The global existence of weak solutions to the compressible Navier–Stokes equations with vacuum attracts many research interests nowadays. For the isentropic gas, the viscosity coefficient depends on density function from physical point of view. When the density function connects to vacuum continuously, the vacuum degeneracy gives some analytic difficulties in proving global existence. In this paper, we consider this case with gravitational force and fixed boundary condition. By giving a series of a priori estimates on the solution coping with the degeneracy of vacuum, gravitational force and boundary effect, we give global existence and uniqueness results similar to the case without force and boundary. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

10.
In this paper we deal with the local exact controllability of the Navier–Stokes system with distributed controls supported in small sets. In a first step, we present a new Carleman inequality for the linearized Navier–Stokes system, which leads to null controllability at any time T>0. Then, we deduce a local result concerning the exact controllability to the trajectories of the Navier–Stokes system.  相似文献   

11.
This paper studies the stability of the rarefaction wave for Navier–Stokes equations in the half‐line without any smallness condition. When the boundary value is given for velocity ux = 0 = u? and the initial data have the state (v+, u+) at x→ + ∞, if u?<u+, it is excepted that there exists a solution of Navier–Stokes equations in the half‐line, which behaves as a 2‐rarefaction wave as t→ + ∞. Matsumura–Nishihara have proved it for barotropic viscous flow (Quart. Appl. Math. 2000; 58:69–83). Here, we generalize it to the isentropic flow with more general pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we study one‐dimensional compressible isentropic Navier–Stokes equations with density‐dependent viscosity. We can obtain the asymptotic stability of rarefaction waves for the compressible isentropic Navier–Stokes equations when the power of viscosity coefficient , which enlarge the range of α in the article [Jiu Q, Wang Y, Xin ZP, Communication in Partial Differential Equations 2011; 36: 602‐634]. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
We study the local stabilization of the three-dimensional Navier–Stokes equations around an unstable stationary solution w, by means of a feedback boundary control. We first determine a feedback law for the linearized system around w. Next, we show that this feedback provides a local stabilization of the Navier–Stokes equations. To deal with the nonlinear term, the solutions to the closed loop system must be in H3/2+ε,3/4+ε/2(Q), with 0<ε. In [V. Barbu, I. Lasiecka, R. Triggiani, Boundary stabilization of Navier–Stokes equations, Mem. Amer. Math. Soc. 852 (2006); V. Barbu, I. Lasiecka, R. Triggiani, Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal. 64 (2006) 2704–2746], such a regularity is achieved with a feedback obtained by minimizing a functional involving a norm of the state variable strong enough. In that case, the feedback controller cannot be determined by a well posed Riccati equation. Here, we choose a functional involving a very weak norm of the state variable. The compatibility condition between the initial state and the feedback controller at t=0, is achieved by choosing a time varying control operator in a neighbourhood of t=0.  相似文献   

14.
The conforming spectral element methods are applied to solve the linearized Navier–Stokes equations by the help of stabilization techniques like those applied for finite elements. The stability and convergence analysis is carried out and essential numerical results are presented demonstrating the high accuracy of the method as well as its robustness. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 115–141, 1998  相似文献   

15.
We show the existence of strong solutions for the nonhomogeneous Navier–Stokes equations in three‐dimensional domains with boundary uniformly of class C3. Under suitable assumptions, uniqueness is also proved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we combine the Galerkin–Lagrange multiplier (GLM) method with the two-level method to solve the stationary Navier–Stokes equations in order to avoid the time-consuming process and the construction of zero-divergence elements. Different quadrilateral partitions are used for approximating the velocity and the pressure. Then some error estimates are obtained and some numerical results of the GLM method and the two-level GLM method are given. The results show that the two-level method based on the GLM method is more efficient than the GLM method under the convergence rate of same order.  相似文献   

17.
We establish the moment estimates for a class of global weak solutions to the Navier–Stokes equations in the half‐space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we consider the stabilization of the nonstationary incompressible Navier–Stokes equations around a stationary solution by a boundary linear feedback control. The feedback operator is obtained from the solution of the algebraic Bernoulli equation associated with the penalized linearized Navier–Stokes equations around an unstable stationary solution and is used to locally stabilize the original nonlinear equations. We give the explicit factorized form of the stabilizing solution of the algebraic Bernoulli equation. The numerical effectiveness of this approach is demonstrated by stabilizing the vortex shedding behind a circular obstacle. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   

20.
This paper investigates the drag minimization in a two‐dimensional flow which is governed by a nonhomogeneous Navier–Stokes equations. Two approaches are utilized to derive shape gradient of the cost functional. The first one is to use the shape derivative of the fluid state and its associated adjoint state; the second one is to utilize the differentiability of a minimax formulation involving a Lagrange functional with a function space parametrization technique. Finally, a gradient type algorithm is effectively formulated and implemented for the mentioned drag minimization problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号