首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a simple and fast explicit hybrid numerical scheme for the motion by mean curvature on curved surfaces in three-dimensional (3D) space. We numerically solve the Allen-Cahn (AC) and conservative Allen-Cahn (CAC) equations on a triangular surface mesh. We use the operator splitting method and an explicit hybrid numerical method. For the AC equation, we solve the diffusion term using a discrete Laplace-Beltrami operator on the triangular surface mesh and solve the reaction term using the closed-form solution, which is obtained using the separation of variables. Next, for the CAC equation, we additionally solve the time-space dependent Lagrange multiplier using an explicit scheme. Our numerical scheme is computationally fast and efficient because we use an explicit hybrid numerical scheme. We perform various numerical experiments to demonstrate the robustness and efficiency of the proposed scheme.  相似文献   

2.
MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS   总被引:5,自引:0,他引:5  
We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstra  相似文献   

3.
A new fast numerical scheme is proposed for solving time‐dependent coupled Burgers' equations. The idea of operator splitting is used to decompose the original problem into nonlinear pure convection subproblems and diffusion subproblems at each time step. Using Taylor's expansion, the nonlinearity in convection subproblems is explicitly treated by resolving a linear convection system with artificial inflow boundary conditions that can be independently solved. A multistep technique is proposed to rescue the possible instability caused by the explicit treatment of the convection system. Meanwhile, the diffusion subproblems are always self‐adjoint and coercive at each time step, and they can be efficiently solved by some existing preconditioned iterative solvers like the preconditioned conjugate galerkin method, and so forth. With the help of finite element discretization, all the major stiffness matrices remain invariant during the time marching process, which makes the present approach extremely fast for the time‐dependent nonlinear problems. Finally, several numerical examples are performed to verify the stability, convergence and performance of the new method.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1823–1838, 2017  相似文献   

4.
We consider the application of a variable V‐cycle multigrid algorithm for the hybridized mixed method for second‐order elliptic boundary‐value problems. Our algorithm differs from the previous works on multigrid for the mixed method in that it is targeted at efficiently solving the matrix system for the Lagrange multiplier of the method. Since the mixed method is best implemented by first solving for the Lagrange multiplier and recovering the remaining unknowns locally, our algorithm is more useful in practice. The critical ingredient in the algorithm is a suitable intergrid transfer operator. We design such an operator and prove mesh‐independent convergence of the variable V‐cycle algorithm. Numerical experiments indicating the asymptotically optimal performance of our algorithm, as well as the failure of certain seemingly plausible intergrid transfer operators, are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we propose an exponential wave integrator sine pseudospectral (EWI‐SP) method for solving the Klein–Gordon–Zakharov (KGZ) system. The numerical method is based on a Deuflhard‐type exponential wave integrator for temporal integrations and the sine pseudospectral method for spatial discretizations. The scheme is fully explicit, time reversible and very efficient due to the fast algorithm. Rigorous finite time error estimates are established for the EWI‐SP method in energy space with no CFL‐type conditions which show that the method has second order accuracy in time and spectral accuracy in space. Extensive numerical experiments and comparisons are done to confirm the theoretical studies. Numerical results suggest the EWI‐SP allows large time steps and mesh size in practical computing. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 266–291, 2016  相似文献   

6.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

7.
In this paper, three high-order accurate and unconditionally energy-stable methods are proposed for solving the conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. One is developed based on an energy linearization Runge–Kutta (EL–RK) method which combines an energy linearization technique with a specific class of RK schemes, the other two are based on the Hamiltonian boundary value method (HBVM) including a Gauss collocation method, which is the particular instance of HBVM, and a general class of cases. The system is first discretized in time by these methods in which the property of unconditional energy stability is proved. Then the Fourier pseudo-spectral method is employed in space along with the proofs of mass conservation. To show the stability and validity of the obtained schemes, a number of 2D and 3D numerical simulations are presented for accurately calculating geometric features of the system. In addition, our numerical results are compared with other known structure-preserving methods in terms of numerical accuracy and conservation properties.  相似文献   

8.
In this paper, we consider a second‐order fast explicit operator splitting method for the viscous Cahn‐Hilliard equation, which includes a viscosity term αΔut (α ∈ (0, 1)) described the influences of internal micro‐forces. The choice α = 0 corresponds to the classical Cahn‐Hilliard equation whilst the choice α = 1 recovers the nonlocal Allen‐Cahn equation. The fundamental idea of our method is to split the original problem into linear and nonlinear parts. The linear subproblem is numerically solved using a pseudo‐spectral method, and thus an ordinary differential equation is obtained. The nonlinear one is solved via TVD‐RK method. The stability and convergence are discussed in L2‐norm. Numerical experiments are performed to validate the accuracy and efficiency of the proposed method. Besides, a detailed comparison is made for the dynamics and the coarsening process of the metastable pattern for various values of α. Moreover, energy degradation and mass conservation are also verified.  相似文献   

9.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We present an explicit sixth‐order compact finite difference scheme for fast high‐accuracy numerical solutions of the two‐dimensional convection diffusion equation with variable coefficients. The sixth‐order scheme is based on the well‐known fourth‐order compact (FOC) scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multiscale multigrid method to compute the fourth‐order solutions on both the coarse grid and the fine grid. Then, an operator interpolation scheme combined with the Richardson extrapolation technique is used to compute a sixth‐order accurate fine grid solution. We compare the computed accuracy and the implementation cost of the new scheme with the standard nine‐point FOC scheme and Sun–Zhang's sixth‐order method. Two convection diffusion problems are solved numerically to validate our proposed sixth‐order scheme. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

11.
In this paper, time‐splitting spectral approximation technique has been proposed for Chen‐Lee‐Liu (CLL) equation involving Riesz fractional derivative. The proposed numerical technique is efficient, unconditionally stable, and of second‐order accuracy in time and of spectral accuracy in space. Moreover, it conserves the total density in the discretized level. In order to examine the results, with the aid of weighted shifted Grünwald‐Letnikov formula for approximating Riesz fractional derivative, Crank‐Nicolson weighted and shifted Grünwald difference (CN‐WSGD) method has been applied for Riesz fractional CLL equation. The comparison of results reveals that the proposed time‐splitting spectral method is very effective and simple for obtaining single soliton numerical solution of Riesz fractional CLL equation.  相似文献   

12.
The time‐dependent Stokes problem is solved using continuous, piecewise linear finite elements and a classical stabilization procedure. Four order‐one methods are proposed for the time discretization. The first one is nothing but the Euler backward scheme and requires a large linear system involving the velocity and pressure unknowns to be solved. The other three schemes allow velocity and pressure computations to be decoupled, namely the pressure‐matrix method, a method based on an inexact LU factorization, and an operator splitting method. Stability and condition number estimates are derived. Numerical experiments in two space dimensions confirm the theoretical predictions. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:632–656, 2001  相似文献   

13.
We describe in this Note a method for the numerical simulation of incompressible viscous flow around moving rigid bodies; we suppose the rigid body motions a priori known. The computational technique takes advantage of a time discretization by operator splitting à la Marchuk-Yanenko and of a finite element space discretization on a fixed mesh, to combine a Lagrange multiplier/fictitious domain treatment of the rigid body motions with an L2-projection technique, to force the incompressibility condition. The results of numerical experiments concerning flow around moving disks at Reynolds number of the order of 100 are presented.  相似文献   

14.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

15.
The explicit implicit domain decomposition methods are noniterative types of methods for nonoverlapping domain decomposition but due to the use of the explicit step for the interface prediction, the methods suffer from inaccuracy of the usual explicit scheme. In this article a specific type of first‐ and second‐order splitting up method, of additive type, for the dependent variables is initially considered to solve the two‐ or three‐dimensional parabolic problem over nonoverlapping subdomains. We have also considered the parallel explicit splitting up algorithm to define (predict) the interface boundary conditions with respect to each spatial variable and for each nonoverlapping subdomains. The parallel second‐order splitting up algorithm is then considered to solve the subproblems defined over each subdomain; the correction step will then be considered for the predicted interface nodal points using the most recent solution values over the subdomains. Finally several model problems will be considered to test the efficiency of the presented algorithm. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

16.
We solve numerically the Kirchhoff‐Love dynamic plate equation for an anisotropic heterogeneous material using a spectral method. A mixed velocity‐moment formulation is proposed for the space approximation allowing the use of classical Lagrange finite elements. The benefit of using high order elements is shown through a numerical dispersion analysis. The system resulting from this spatial discretization is solved analytically. Hence this method is particularly efficient for long duration experiments. This time evolution method is compared with explicit and implicit finite differences schemes in terms of accuracy and computation time. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

17.
The value of a contingent claim under a jump‐diffusion process satisfies a partial integro‐differential equation. A fourth‐order compact finite difference scheme is applied to discretize the spatial variable of this equation. It is discretized in time by an implicit‐explicit method. Meanwhile, a local mesh refinement strategy is used for handling the nonsmooth payoff condition. Moreover, the numerical quadrature method is exploited to evaluate the jump integral term. It guarantees a Toeplitz‐like structure of the integral operator such that a fast algorithm is feasible. Numerical results show that this approach gives fourth‐order accuracy in space. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

18.
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise constraint and the solution of the system of linear equations into separate fractional time steps. With this approach an efficient numerical method can be chosen for solving the system of linear equations in the first fractional step before making a simple update to satisfy the early exercise constraint. Our analysis suggests that the Crank–Nicolson method and the operator splitting method based on it have the same asymptotic order of accuracy. The numerical experiments show that the operator splitting methods have comparable discretization errors. They also demonstrate the efficiency of the operator splitting methods when a multigrid method is used for solving the systems of linear equations.  相似文献   

19.
In this paper, we analyze the energy‐conserved splitting finite‐difference time‐domain (FDTD) scheme for variable coefficient Maxwell's equations in two‐dimensional disk domains. The approach is energy‐conserved, unconditionally stable, and effective. We strictly prove that the EC‐S‐FDTD scheme for the variable coefficient Maxwell's equations in disk domains is of second order accuracy both in time and space. It is also strictly proved that the scheme is energy‐conserved, and the discrete divergence‐free is of second order convergence. Numerical experiments confirm the theoretical results, and practical test is simulated as well to demonstrate the efficiency of the proposed EC‐S‐FDTD scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The explicit closed‐form solutions for a second‐order differential equation with a constant self‐adjoint positive definite operator coefficient A (the hyperbolic case) and for the abstract Euler–Poisson–Darboux equation in a Hilbert space are presented. On the basis of these representations, we propose approximate solutions and give error estimates. The accuracy of the approximation automatically depends on the smoothness of the initial data. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 111–131, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号