首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is concerned with the periodic problem for compressible non‐isentropic Euler–Maxwell systems with a temperature damping term arising in plasmas. For this problem, we prove the global in time existence of a smooth solution around a given non‐constant steady state with the help of an induction argument on the order of the mixed time‐space derivatives of solutions in energy estimates. Moreover, we also show the convergence of the solution to this steady state as the time goes to the infinity. This phenomenon on the charge transport shows the essential relation of the systems with the non‐isentropic Euler–Maxwell and the isentropic Euler–Maxwell systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We study semi‐classical measures of families of solutions to a 2 × 2 Dirac system with 0 mass, which presents bands crossing. We focus on constant electro‐magnetic fields. The fact that these fields are orthogonal or not leads to different geometric situations. In the first case, one reduces to some well‐understood model problem. For studying the second case, we introduce some two‐scale semi‐classical measures associated with symplectic submanifold. These measures are operator‐valued measures and the transfer of energy at the crossing is described by a non‐commutative Landau‐Zener formula for these measures. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we study the zero viscosity and capillarity limit problem for the one‐dimensional compressible isentropic Navier–Stokes–Korteweg equations when the corresponding Euler equations have rarefaction wave solutions. In the case that either the effects of initial layer are ignored or the rarefaction waves are smooth, we prove that the solutions of the Navier–Stokes–Korteweg equation with centered rarefaction wave data exist for all time and converge to the centered rarefaction waves as the viscosity and capillarity number vanish, and we also obtain a rate of convergence, which is valid uniformly for all time. These results are showed by a scaling argument and elementary energy analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We study the properties of coefficient matrices arising from high‐order compact discretizations of convection‐diffusion problems. Asymptotic convergence factors of the convex hull of the spectrum and the field of values of the coefficient matrix for a one‐dimensional problem are derived, and the convergence factor of the convex hull of the spectrum is shown to be inadequate for predicting the convergence rate of GMRES. For a two‐dimensional constant‐coefficient problem, we derive the eigenvalues of the nine‐point matrix, and we show that the matrix is positive definite for all values of the cell‐Reynolds number. Using a recent technique for deriving analytic expressions for discrete solutions produced by the fourth‐order scheme, we show by analyzing the terms in the discrete solutions that they are oscillation‐free for all values of the cell Reynolds number. Our theoretical results support observations made through numerical experiments by other researchers on the non‐oscillatory nature of the discrete solution produced by fourth‐order compact approximations to the convection‐diffusion equation. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 155–178, 2002; DOI 10.1002/num.1041  相似文献   

6.
In this paper, we construct a weakly‐nonlinear d'Alembert‐type solution of the Cauchy problem for the Boussinesq‐Klein‐Gordon (BKG) equation. Similarly to our earlier work based on the use of spatial Fourier series, we consider the problem in the class of periodic functions on an interval of finite length (including the case of localized solutions on a large interval), and work with the nonlinear partial differential equation with variable coefficients describing the deviation from the oscillating mean value. Unlike our earlier paper, here we develop a novel multiple‐scales procedure involving fast characteristic variables and two slow time scales and averaging with respect to the spatial variable at a constant value of one or another characteristic variable, which allows us to construct an explicit and compact d'Alembert‐type solution of the nonlinear problem in terms of solutions of two Ostrovsky equations emerging at the leading order and describing the right‐ and left‐propagating waves. Validity of the constructed solution in the case when only the first initial condition for the BKG equation may have nonzero mean value follows from our earlier results, and is illustrated numerically for a number of instructive examples, both for periodic solutions on a finite interval, and localized solutions on a large interval. We also outline an extension of the procedure to the general case, when both initial conditions may have nonzero mean values. Importantly, in all cases, the initial conditions for the leading‐order Ostrovsky equations by construction have zero mean, while initial conditions for the BKG equation may have nonzero mean values.  相似文献   

7.
In this paper we show some non‐elementary speed‐ups in logic calculi: Both a predicative second‐order logic and a logic for fixed points of positive formulas are shown to have non‐elementary speed‐ups over first‐order logic. Also it is shown that eliminating second‐order cut formulas in second‐order logic has to increase sizes of proofs super‐exponentially, and the same in eliminating second‐order epsilon axioms. These are proved by relying on results due to P. Pudlák. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
《Mathematische Nachrichten》2017,290(11-12):1779-1805
In this paper we will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove blow‐up results or global existence (in time) of small data energy solutions.  相似文献   

9.
We prove the existence and uniqueness of global solutions for a Cauchy problem associated to a semilinear Klein‐Gordon equation in two space dimensions. Our result is based on an interpolation estimate with a sharp constant obtained by a standard variational method. © 2006 Wiley Periodicals, Inc.  相似文献   

10.
On the model of the cycle‐plus‐triangles theorem, we consider the problem of 3‐colorability of those 4‐regular hamiltonian graphs for which the components of the edge‐complement of a given hamiltonian cycle are non‐selfcrossing cycles of constant length ≥ 4. We show that this problem is NP‐complete. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 125–140, 2003  相似文献   

11.
This paper is devoted to the existence of global‐in‐time weak solutions to a one‐dimensional full compressible non‐Newtonian fluid. A semi‐discrete finite element scheme is taken to generate approximate solutions, based on an exact projection technique. To enforce convergence of the approximate solutions, the uniform estimate is obtained using an iteration method and energy method, with the help of the weak compactness and convexity. Numerical simulations showing the existence of solutions are presented.  相似文献   

12.
We consider the blow‐up of solutions for a semilinear reaction‐diffusion equation with exponential reaction term. It is known that certain solutions that can be continued beyond the blow‐up time possess a non‐constant self‐similar blow‐up profile. Our aim is to find the final time blow‐up profile for such solutions. The proof is based on general ideas using semigroup estimates. The same approach works also for the power nonlinearity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with global existence and asymptotic behavior of H1 solutions to the Cauchy problem of one‐dimensional full non‐Newtonian fluids with the weighted small initial data. We then obtain the global existence of Hi(i = 2,4) solutions and their asymptotic behavior for the system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We prove nonlinear stability of compactly supported expanding star solutions of the mass‐critical gravitational Euler‐Poisson system. These special solutions were discovered by Goldreich and Weber in 1980. The expansion rate of such solutions can be either self‐similar or non‐self‐similar (linear), and we treat both types. An important outcome of our stability results is the existence of a new class of global‐in‐time radially symmetric solutions, which are not homologous and therefore not encompassed by the existing works. Using Lagrangian coordinates we reformulate the associated free‐boundary problem as a degenerate quasilinear wave equation on a compact spatial domain. The problem is mass‐critical with respect to an invariant rescaling and the analysis is carried out in similarity variables. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
《Mathematische Nachrichten》2018,291(11-12):1859-1892
This paper is a continuation of our recent paper 8 . We will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove global existence (in time) of small data energy solutions assuming suitable regularity on the L2 scale with additional L1 regularity for the data. In order to deal with this L2 regularity in the non‐linear part, we will develop and employ some tools from Harmonic Analysis.  相似文献   

16.
17.
A reaction‐diffusion two‐predator‐one‐prey system with prey‐taxis describes the spatial interaction and random movement of predator and prey species, as well as the spatial movement of predators pursuing preys. The global existence and boundedness of solutions of the system in bounded domains of arbitrary spatial dimension and any small prey‐taxis sensitivity coefficient are investigated by the semigroup theory. The spatial pattern formation induced by the prey‐taxis is characterized by the Turing type linear instability of homogeneous state; it is shown that prey‐taxis can both compress and prompt the spatial patterns produced through diffusion‐induced instability in two‐predator‐one‐prey systems.  相似文献   

18.
We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the isentropic compressible Navier‐Stokes equations in three spatial dimensions with smooth initial data that are of small energy but possibly large oscillations with constant state as far field, which could be either vacuum or nonvacuum. The initial density is allowed to vanish, and the spatial measure of the set of vacuum can be arbitrarily large; in particular, the initial density can even have compact support. These results generalize previous results on classical solutions for initial densities being strictly away from vacuum and are the first for global classical solutions that may have large oscillations and can contain vacuum states. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In this paper we study the spatial behaviour of solutions of some problems for the dual‐phase‐lag heat equation on a semi‐infinite cylinder. The theory of dual‐phase‐lag heat conduction leads to a hyperbolic partial differential equation with a third derivative with respect to time. First, we investigate the spatial evolution of solutions of an initial boundary‐value problem with zero boundary conditions on the lateral surface of the cylinder. Under a boundedness restriction on the initial data, an energy estimate is obtained. An upper bound for the amplitude term in this estimate in terms of the initial and boundary data is also established. For the case of zero initial conditions, a more explicit estimate is obtained which shows that solutions decay exponentially along certain spatial‐time lines. A class of non‐standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T are assumed proportional to their initial values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we present results concerning with the existence of global solutions and a rate decay estimate for energy associated with an initial and boundary value problem for a beam evolution equation with variable coefficients in non‐cylindrical domains. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号