首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we first address the uniqueness of phaseless inverse discrete Hilbert transform (phaseless IDHT for short) from the magnitude of discrete Hilbert transform (DHT for short). The measurement vectors of phaseless IDHT do not satisfy the complement property, a traditional requirement for ensuring the uniqueness of phase retrieval. Consequently, the uniqueness problem of phaseless IDHT is essentially different from that of the traditional phase retrieval. For the phaseless IDHT related to compactly supported functions, conditions are given in our first main theorem to ensure the uniqueness. A condition on the step size of DHT is crucial for the insurance. The second main theorem concerns the uniqueness related to noncompactly supported functions. It is not the trivial generalization of the first main theorem. Our third main result is on the determination of signals in shift‐invariant spaces by phaseless IDHT. Note that the measurements used for the determination are the DHT magnitudes. They are the approximations to the Hilbert transform magnitudes. Recall that for the existing methods of phaseless sampling (a special phase‐retrieval problem), to determine a signal depends on the exact measurements but not the approximative ones. Therefore, our determination method is essentially different from the traditional phaseless sampling. Numerical simulations are conducted to examine the efficiency of phaseless IDHT and its application in determining signals in spline Hilbert shift‐invariant space.  相似文献   

2.
Let A be an expansive linear map in . Approximation properties of shift‐invariant subspaces of when they are dilated by integer powers of A are studied. Shift‐invariant subspaces providing approximation order α or density order α associated to A are characterized. These characterizations impose certain restrictions on the behavior of the spectral function at the origin expressed in terms of the concept of point of approximate continuity. The notions of approximation order and density order associated to an isotropic dilation turn out to coincide with the classical ones introduced by de Boor, DeVore and Ron. This is no longer true when A is anisotropic. In this case the A‐dilated shift‐invariant subspaces approximate the anisotropic Sobolev space associated to A and α. Our main results are also new when S is generated by translates of a single function. The obtained results are illustrated by some examples.  相似文献   

3.
Regularization methods, including Lasso, group Lasso, and SCAD, typically focus on selecting variables with strong effects while ignoring weak signals. This may result in biased prediction, especially when weak signals outnumber strong signals. This paper aims to incorporate weak signals in variable selection, estimation, and prediction. We propose a two‐stage procedure, consisting of variable selection and postselection estimation. The variable selection stage involves a covariance‐insured screening for detecting weak signals, whereas the postselection estimation stage involves a shrinkage estimator for jointly estimating strong and weak signals selected from the first stage. We term the proposed method as the covariance‐insured screening‐based postselection shrinkage estimator. We establish asymptotic properties for the proposed method and show, via simulations, that incorporating weak signals can improve estimation and prediction performance. We apply the proposed method to predict the annual gross domestic product rates based on various socioeconomic indicators for 82 countries.  相似文献   

4.
For each simply connected three‐dimensional Lie group we determine the automorphism group, classify the left invariant Riemannian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the principal Ricci curvatures, the scalar curvature and the sectional curvatures as functions of left invariant metrics on the three‐dimensional Lie groups. Our results improve a bit of Milnor's results of [7] in the three‐dimensional case, and Kowalski and Nikv?cevi?'s results [6, Theorems 3.1 and 4.1] (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We revisit the shift‐and‐invert Arnoldi method proposed in [S. Lee, H. Pang, and H. Sun. Shift‐invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32: 774–792, 2010] for numerical approximation to the product of Toeplitz matrix exponential with a vector. In this approach, one has to solve two large‐scale Toeplitz linear systems in advance. However, if the desired accuracy is high, the cost will be prohibitive. Therefore, it is interesting to investigate how to solve the Toeplitz systems inexactly in this method. The contribution of this paper is in three regards. First, we give a new stability analysis on the Gohberg–Semencul formula (GSF) and define the GSF condition number of a Toeplitz matrix. It is shown that when the size of the Toeplitz matrix is large, our result is sharper than the one given in [M. Gutknecht and M. Hochbruck. The stability of inversion formulas for Toeplitz matrices, Linear Algebra Appl., 223/224: 307–324, 1995]. Second, we establish a relation between the error of Toeplitz systems and the residual of Toeplitz matrix exponential. We show that if the GSF condition number of the Toeplitz matrix is medium‐sized, then the Toeplitz systems can be solved in a low accuracy. Third, based on this relationship, we present a practical stopping criterion for relaxing the accuracy of the Toeplitz systems and propose an inexact shift‐and‐invert Arnoldi algorithm for the Toeplitz matrix exponential problem. Numerical experiments illustrate the numerical behavior of the new algorithm and show the effectiveness of our theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We derive a high‐order compact alternating direction implicit (ADI) method for solving three‐dimentional unsteady convection‐diffusion problems. The method is fourth‐order in space and second‐order in time. It permits multiple uses of the one‐dimensional tridiagonal algorithm with a considerable saving in computing time and results in a very efficient solver. It is shown through a discrete Fourier analysis that the method is unconditionally stable in the diffusion case. Numerical experiments are conducted to test its high order and to compare it with the standard second‐order Douglas‐Gunn ADI method and the spatial fourth‐order compact scheme by Karaa. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

7.
A new shift‐adaptive meshfree method for solving a class of time‐dependent partial differential equations (PDEs) in a bounded domain (one‐dimensional domain) with moving boundaries and nonhomogeneous boundary conditions is introduced. The radial basis function (RBF) collocation method is combined with the finite difference scheme, because, unlike with Kansa's method, nonlinear PDEs can be converted to a system of linear equations. The grid‐free property of the RBF method is exploited, and a new adaptive algorithm is used to choose the location of the collocation points in the first time step only. In fact, instead of applying the adaptive algorithm on the entire domain of the problem (like with other existing adaptive algorithms), the new adaptive algorithm can be applied only on time steps. Furthermore, because of the radial property of the RBFs, the new adaptive strategy is applied only on the first time step; in the other time steps, the adaptive nodes (obtained in the first time step) are shifted. Thus, only one small system of linear equations must be solved (by LU decomposition method) rather than a large linear or nonlinear system of equations as in Kansa's method (adaptive strategy applied to entire domain), or a large number of small linear systems of equations in the adaptive strategy on each time step. This saves a lot in time and memory usage. Also, Stability analysis is obtained for our scheme, using Von Neumann stability analysis method. Results show that the new method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution, and the adaptive grading scheme is effective in localizing oscillations due to sharp gradients or discontinuities in the solution. The efficiency and effectiveness of the proposed procedure is examined by adaptively solving two difficult benchmark problems, including a regularized long‐wave equation and a Korteweg‐de Vries problem. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1622–1646, 2016  相似文献   

8.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

9.
Phase‐field models, consisting of a set of highly nonlinear coupled parabolic partial differential equations, are widely used for the simulation of a range of solidification phenomena. This article focuses on the numerical solution of one such model, representing anisotropic solidification in three space dimensions. The main contribution of the work is to propose a solution strategy that combines hierarchical mesh adaptivity with implicit time integration and the use of a nonlinear multigrid solver at each step. This strategy is implemented in a general software framework that permits parallel computation in a natural manner. Results are presented that provide both qualitative and quantitative justifications for these choices.© 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

10.
In this article we develop a high‐order Godunov method for one‐dimensional convection‐diffusion‐reaction problems where convection dominates diffusion. The heart of this method comes from incorporating the diffusion term via the slope of the linear representation (recovery) of the solution on each grid cell. The method is conservative and explicit. Therefore, it is efficient in computing time. For constant coefficient linear convection, diffusion, and Lipschitz‐type reaction, the properties of the total variation stability and monotonicity preservation are proved. An error estimation is derived. Computational examples are presented and compared with the exact solutions. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 495–512, 2000  相似文献   

11.
An efficient higher‐order finite difference algorithm is presented in this article for solving systems of two‐dimensional reaction‐diffusion equations with nonlinear reaction terms. The method is fourth‐order accurate in both the temporal and spatial dimensions. It requires only a regular five‐point difference stencil similar to that used in the standard second‐order algorithm, such as the Crank‐Nicolson algorithm. The Padé approximation and Richardson extrapolation are used to achieve high‐order accuracy in the spatial and temporal dimensions, respectively. Numerical examples are presented to demonstrate the efficiency and accuracy of the new algorithm. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 340–354, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10012  相似文献   

12.
13.
The generalized T2 chart (GT‐chart), which is composed of the T2 statistic based on a small number of principal components and the remaining components, is a popular alternative to the traditional Hotelling's T2 control chart. However, the application of the GT‐chart to high‐dimensional data, which are now ubiquitous, encounters difficulties from high dimensionality similar to other multivariate procedures. The sample principal components and their eigenvalues do not consistently estimate the population values, and the GT‐chart relying on them is also inconsistent in estimating the control limits. In this paper, we investigate the effects of high dimensionality on the GT‐chart and then propose a corrected GT‐chart using the recent results of random matrix theory for the spiked covariance model. We numerically show that the corrected GT‐chart exhibits superior performance compared to the existing methods, including the GT‐chart and Hotelling's T2 control chart, under various high‐dimensional cases. Finally, we apply the proposed corrected GT‐chart to monitor chemical processes introduced in the literature.  相似文献   

14.
In this article, we conduct an a posteriori error analysis of the two‐dimensional time‐dependent Stokes problem with homogeneous Dirichlet boundary conditions, which can be extended to mixed boundary conditions. We present a full time–space discretization using the discontinuous Galerkin method with polynomials of any degree in time and the ? 2 ? ?1 Taylor–Hood finite elements in space, and propose an a posteriori residual‐type error estimator. The upper bounds involve residuals, which are global in space and local in time, and an L 2‐error term evaluated on the left‐end point of time step. From the error estimate, we compute local error indicators to develop an adaptive space/time mesh refinement strategy. Numerical experiments verify our theoretical results and the proposed adaptive strategy.  相似文献   

15.
Reliable and efficient a posteriori error estimates are derived for the edge element discretization of a saddle‐point Maxwell's system. By means of the error estimates, an adaptive edge element method is proposed and its convergence is rigorously demonstrated. The algorithm uses a marking strategy based only on the error indicators, without the commonly used information on local oscillations and the refinement to meet the standard interior node property. Some new ingredients in the analysis include a novel quasi‐orthogonality and a new inf‐sup inequality associated with an appropriately chosen norm. It is shown that the algorithm is a contraction for the sum of the energy error plus the error indicators after each refinement step. Numerical experiments are presented to show the robustness and effectiveness of the proposed adaptive algorithm. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

16.
In this article we analyze a finite element method for three‐dimensional unsteady compressible Navier‐Stokes equations. We prove the existence and uniqueness of the numerical solution, and obtain a priori error estimates uniform in time. Numerical computations are carried out to test the orders of accuracy in the error estimates. Blend function interpolations are applied in the calculation of numerical integrations. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 432–449, 2004.  相似文献   

17.
We combine fourth‐order boundary value methods (BVMs) for discretizing the temporal variable with fourth‐order compact difference scheme for discretizing the spatial variable to solve one‐dimensional heat equations. This class of new compact difference schemes achieve fourth‐order accuracy in both temporal and spatial variables and are unconditionally stable due to the favorable stability property of BVMs. Numerical results are presented to demonstrate the accuracy and efficiency of the new compact difference scheme, compared to the standard second‐order Crank‐Nicolson scheme. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 846–857, 2003.  相似文献   

18.
This article concerns with incorporating wavelet bases into existing streamline upwind Petrov‐Galerkin (SUPG) methods for the numerical solution of nonlinear hyperbolic conservation laws which are known to develop shock solutions. Here, we utilize an SUPG formulation using continuous Galerkin in space and discontinuous Galerkin in time. The main motivation for such a combination is that these methods have good stability properties thanks to adding diffusion in the direction of streamlines. But they are more expensive than explicit semidiscrete methods as they have to use space‐time formulations. Using wavelet bases we maintain the stability properties of SUPG methods while we reduce the cost of these methods significantly through natural adaptivity of wavelet expansions. In addition, wavelet bases have a hierarchical structure. We use this property to numerically investigate the hierarchical addition of an artificial diffusion for further stabilization in spirit of spectral diffusion. Furthermore, we add the hierarchical diffusion only in the vicinity of discontinuities using the feature of wavelet bases in detection of location of discontinuities. Also, we again use the last feature of the wavelet bases to perform a postprocessing using a denosing technique based on a minimization formulation to reduce Gibbs oscillations near discontinuities while keeping other regions intact. Finally, we show the performance of the proposed combination through some numerical examples including Burgers’, transport, and wave equations as well as systems of shallow water equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2062–2089, 2017  相似文献   

19.
In this paper, we develop an hp‐adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction‐type adaptive Newton method and an hp‐version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hp‐adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Business failure prediction models are important in providing warning for preventing financial distress and giving stakeholders time to react in a timely manner to a crisis. The empirical approach to corporate distress analysis and forecasting has recently attracted new attention from financial institutions, academics, and practitioners. In fact, this field is as interesting today as it was in the 1930s, and over the last 80 years, a remarkable body of both theoretical and empirical studies on this topic has been published. Nevertheless, some issues are still under investigation, such as the selection of financial ratios to define business failure and the identification of an optimal subset of predictors. For this purpose, there exist a large number of methods that can be used, although their drawbacks are usually neglected in this context. Moreover, most variable selection procedures are based on some very strict assumptions (linearity and additivity) that make their application difficult in business failure prediction. This paper proposes to overcome these limits by selecting relevant variables using a nonparametric method named Rodeo that is consistent even when the aforementioned assumptions are not satisfied. We also compare Rodeo with two other variable selection methods (Lasso and Adaptive Lasso), and the empirical results demonstrate that our proposed procedure outperforms the others in terms of positive/negative predictive value and is able to capture the nonlinear effects of the selected variables. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号