共查询到20条相似文献,搜索用时 46 毫秒
1.
Huazhao Xie 《Mathematical Methods in the Applied Sciences》2011,34(2):242-248
The main purpose of this paper is concerned with blow‐up smooth solutions to Navier–Stokes–Poisson (N‐S‐P) equations. First, we present a sufficient condition on the blow up of smooth solutions to the N‐S‐P system. Then we construct a family of analytical solutions that blow up in finite time. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
In this paper, we consider the Navier–Stokes–Poisson equations for compressible, barotropic flow in two space dimensions. We introduce useful tools from the theory of Orlicz spaces. Then we prove the existence of globally defined finite energy weak solutions for the pressure satisfying p(?)=a?logd (?) for large ?. Here d>1 and a>0. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
Local strong solution of Navier–Stokes–Poisson equations with degenerated viscosity coefficient 下载免费PDF全文
Qin Duan 《Mathematical Methods in the Applied Sciences》2015,38(17):4154-4177
In this paper, we investigate the vacuum free boundary problem of a compressible Navier–Stokes–Poisson system with density‐dependent viscosity. By introducing Eulerian and Lagrange energy, we obtain a local in time well‐posedness of the strong solution to the Navier–Stokes–Poisson system in a spherically symmetric case. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
Global weak solutions to the Cauchy problem of compressible Navier–Stokes–Vlasov–Fokker–Planck equations 下载免费PDF全文
Weiwei Wang 《Mathematical Methods in the Applied Sciences》2016,39(3):508-526
A fluid–particles system of the compressible Navier‐Stokes equations and Vlasov‐Fokker‐Planck equation (including the case of Vlasov equation) in three‐dimensional space is considered in this paper. The coupling arises from a drag force exerted by the fluid onto the particles. We study a Cauchy problem with large data, and establish the existence of global weak solutions through an approximation scheme, energy estimates, and weak convergence. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
Stability of the superposition of rarefaction wave and contact discontinuity for the non‐isentropic Navier–Stokes–Poisson system 下载免费PDF全文
Lizhi Ruan Haiyan Yin Changjiang Zhu 《Mathematical Methods in the Applied Sciences》2017,40(7):2784-2810
This paper is devoted to the study of the nonlinear stability of the composite wave consisting of a rarefaction wave and a viscous contact discontinuity wave of the non‐isentropic Navier–Stokes–Poisson system with free boundary. We first construct the composite wave through the quasineutral Euler equations and then prove that the composite wave is time asymptotically stable under small perturbations for the corresponding initial‐boundary value problem of the non‐isentropic Navier–Stokes–Poisson system. Only the strength of the viscous contact wave is required to be small. However, the strength of the rarefaction wave can be arbitrarily large. In our analysis, the domain decomposition plays an important role in obtaining the zero‐order energy estimates. By introducing this technique, we successfully overcome the difficulty caused by the critical terms involved with the linear term, which does not satisfy the quasineural assumption for the composite wave. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
6.
Zero‐viscosity‐capillarity limit to rarefaction waves for the 1D compressible Navier–Stokes–Korteweg equations 下载免费PDF全文
In this paper, we study the zero viscosity and capillarity limit problem for the one‐dimensional compressible isentropic Navier–Stokes–Korteweg equations when the corresponding Euler equations have rarefaction wave solutions. In the case that either the effects of initial layer are ignored or the rarefaction waves are smooth, we prove that the solutions of the Navier–Stokes–Korteweg equation with centered rarefaction wave data exist for all time and converge to the centered rarefaction waves as the viscosity and capillarity number vanish, and we also obtain a rate of convergence, which is valid uniformly for all time. These results are showed by a scaling argument and elementary energy analysis. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
Masao Yamazaki 《Mathematische Nachrichten》2016,289(17-18):2281-2311
This paper is concerned with the stationary Navier–Stokes equation in the whole plane and in the two–dimensional exterior domain invariant under the action of the cyclic group of order 4, and gives a condition on the potentials yielding the external force, and on the boundary value, sufficient for the unique existence of a small solution equivariant with respect to the aforementioned cyclic group. 相似文献
8.
Francesca Crispo Alfonsina Tartaglione 《Mathematical Methods in the Applied Sciences》2007,30(12):1375-1401
We consider the problem of the asymptotic behaviour in the L2‐norm of solutions of the Navier–Stokes equations. We consider perturbations to the rest state and to stationary motions. In both cases we study the initial‐boundary value problem in unbounded domains with non‐compact boundary. In particular, we deal with domains with varying and possibly divergent exits to infinity and aperture domains. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
W. M. Zaja̧czkowski 《Mathematical Methods in the Applied Sciences》2007,30(2):123-151
First the existence of global regular two‐dimensional solutions to Navier–Stokes equations in a bounded cylinder and for boundary slip conditions is proved. Next stability of sum of two dimensional and axially symmetric solutions is proved. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
10.
《Mathematische Nachrichten》2017,290(13):1939-1970
We are concerned with the study of the Cauchy problem for the Navier–Stokes–Poisson system in the critical regularity framework. In the case of a repulsive potential, we first establish the unique global solvability in any dimension for small perturbations of a linearly stable constant state. Next, under a suitable additional condition involving only the low frequencies of the data and in the L2‐critical framework (for simplicity), we exhibit optimal decay estimates for the constructed global solutions, which are similar to those of the barotropic compressible Navier–Stokes system. Our results rely on new a priori estimates for the linearized Navier–Stokes–Poisson system about a stable constant equilibrium, and on a refined time‐weighted energy functional. 相似文献
11.
In this article, we consider a three‐dimensional Navier–Stokes–Voight model with memory where relaxation effects are described through a distributed delay. We prove the existence of uniform global attractors , where ? ∈ (0,1) is the scaling parameter in the memory kernel. Furthermore, we prove that the model converges to the classical three‐dimensional Navier–Stokes–Voight system in an appropriate sense as ? → 0. In particular, we construct a family of exponential attractors Ξ? that is robust as ? → 0. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
In this paper, we establish exact solutions of the Cauchy problem for the 3D cylindrically symmetric incompressible Navier–Stokes equations and further study the global existence and asymptotic behavior of solutions. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
13.
Yong Zhou 《Mathematical Methods in the Applied Sciences》2007,30(10):1223-1229
In this paper we derive a decay rate of the L2‐norm of the solution to the 3‐D Navier–Stokes equations. Although the result which is proved by Fourier splitting method is well known, our method is new, concise and direct. Moreover, it turns out that the new method established here has a wide application on other equations. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
Luigi C. Berselli 《Mathematical Methods in the Applied Sciences》1999,22(13):1079-1085
In this paper we find sufficient conditions, involving only the pressure, that ensure the regularity of weak solutions to the Navier–Stokes equations. Conditions involving only the pressure were previously obtained in [7,4]. Following a remark in this last reference we improve, in particular, Kaniel's result [7]. Our condition can be seen at the light of the heuristic idea that the pressure behaves similarly to the modulus squared of the velocity. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
15.
We study the isentropic compressible Navier–Stokes equations with radially symmetric data in an annular domain. We first prove the global existence and regularity results on the radially symmetric weak solutions with non‐negative bounded densities. Then we prove the global existence of radially symmetric strong solutions when the initial data ρ0, u 0 satisfy the compatibility condition for some radially symmetric g ∈ L2. The initial density ρ0 needs not be positive. We also prove some uniqueness results on the strong solutions. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
16.
We study the Navier–Stokes equations for nonhomogeneous incompressible fluids in a bounded domain Ω of R3. We first prove the existence and uniqueness of local classical solutions to the initial boundary value problem of linear Stokes equations and then we obtain the existence and uniqueness of local classical solutions to the Navier–Stokes equations with vacuum under the assumption that the data satisfies a natural compatibility condition. 相似文献
17.
Guangwu Wang Boling Guo Shaomei Fang 《Mathematical Methods in the Applied Sciences》2017,40(14):5262-5272
In this paper, we will firstly extend the results about Jiu, Wang, and Xin (JDE, 2015, 259, 2981–3003). We prove that any smooth solution of compressible fluid will blow up without any restriction about the specific heat ratio γ. Then we prove the blow‐up of smooth solution of compressible Navier–Stokes equations in half space with Navier‐slip boundary. The main ideal is constructing the differential inequality. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
18.
In this per, we consider a special class of initial data for the three‐dimensional incompressible Navier–Stokes equations with gravity. We show that, under such conditions, the incompressible Navier‐Stokes equations with gravity are globally well posed, and the velocity minus gravity term has finite energy. The important features of the initial data is that the velocity fields minus gravity term are almost parallel to the corresponding vorticity fields in a very large space domain. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
The motion of the self‐gravitational gaseous stars can be described by the Euler–Poisson equations. For some velocity fields and entropy functions that solve the conservation of mass and energy, we consider the existence of stationary solutions of Euler–Poisson equations. Under various restriction to the strength of velocity field, different assumptions on the isentropic function and adiabatic exponent, we get the existence, multiplicity and uniqueness of the stationary solutions to the Euler–Poisson system, respectively. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献