首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an implicit‐explicit two‐step backward differentiation formula (IMEX‐BDF2) together with finite difference compact scheme is developed for the numerical pricing of European and American options whose asset price dynamics follow the regime‐switching jump‐diffusion process. It is shown that IMEX‐BDF2 method for solving this system of coupled partial integro‐differential equations is stable with the second‐order accuracy in time. On the basis of IMEX‐BDF2 time semi‐discrete method, we derive a fourth‐order compact (FOC) finite difference scheme for spatial discretization. Since the payoff function of the option at the strike price is not differentiable, the results show only second‐order accuracy in space. To remedy this, a local mesh refinement strategy is used near the strike price so that the accuracy achieves fourth order. Numerical results illustrate the effectiveness of the proposed method for European and American options under regime‐switching jump‐diffusion models.  相似文献   

2.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

3.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

4.
In this article, a fast singly diagonally implicit Runge–Kutta method is designed to solve unsteady one‐dimensional convection diffusion equations. We use a three point compact finite difference approximation for the spatial discretization and also a three‐stage singly diagonally implicit Runge–Kutta (RK) method for the temporal discretization. In particular, a formulation evaluating the boundary values assigned to the internal stages for the RK method is derived so that a phenomenon of the order of the reduction for the convergence does not occur. The proposed scheme not only has fourth‐order accuracy in both space and time variables but also is computationally efficient, requiring only a linear matrix solver for a tridiagonal matrix system. It is also shown that the proposed scheme is unconditionally stable and suitable for stiff problems. Several numerical examples are solved by the new scheme and the numerical efficiency and superiority of it are compared with the numerical results obtained by other methods in the literature. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 788–812, 2014  相似文献   

5.
In this article, we study the stability and convergence of the Crank‐Nicolson/Adams‐Bashforth scheme for the two‐dimensional nonstationary Navier‐Stokes equations with a nonsmooth initial data. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the implicit Crank‐Nicolson scheme for the linear terms and the explicit Adams‐Bashforth scheme for the nonlinear term. Moreover, we prove that the scheme is almost unconditionally stable for a nonsmooth initial data u0 with div u0 = 0, i.e., the time step τ satisfies: τ ≤ C0 if u0H1L; τ |log h| ≤ C0 if u0H1 for the mesh size h and some positive constant C0. Finally, we obtain some error estimates for the discrete velocity and pressure under the above stability condition. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 155‐187, 2012  相似文献   

6.
In this work we construct and analyze some finite difference schemes used to solve a class of time‐dependent one‐dimensional convection‐diffusion problems, which present only regular layers in their solution. We use the implicit Euler or the Crank‐Nicolson method to discretize the time variable and a HODIE finite difference scheme, defined on a piecewise uniform Shishkin mesh, to discretize the spatial variable. In both cases we prove that the numerical method is uniformly convergent with respect to the diffusion parameter, having order near two in space and order one or 3/2, depending on the method used, in time. We show some numerical examples which illustrate the theoretical results, in the case of using the Euler implicit method, and give better numerical behaviour than that predicted theoretically, showing order two in time and order N?2log2N in space, if the Crank‐Nicolson scheme is used to discretize the time variable. Finally, we construct a numerical algorithm by combining a third order A‐stable SDIRK with two stages and a third‐order HODIE difference scheme, showing its uniformly convergent behavior, reaching order three, up to a logarithmic factor. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

7.
We combine fourth‐order boundary value methods (BVMs) for discretizing the temporal variable with fourth‐order compact difference scheme for discretizing the spatial variable to solve one‐dimensional heat equations. This class of new compact difference schemes achieve fourth‐order accuracy in both temporal and spatial variables and are unconditionally stable due to the favorable stability property of BVMs. Numerical results are presented to demonstrate the accuracy and efficiency of the new compact difference scheme, compared to the standard second‐order Crank‐Nicolson scheme. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 846–857, 2003.  相似文献   

8.
In this article, a new compact alternating direction implicit finite difference scheme is derived for solving a class of 3‐D nonlinear evolution equations. By the discrete energy method, it is shown that the new difference scheme has good stability and can attain second‐order accuracy in time and fourth‐order accuracy in space with respect to the discrete H1 ‐norm. A Richardson extrapolation algorithm is applied to achieve fourth‐order accuracy in temporal dimension. Numerical experiments illustrate the accuracy and efficiency of the extrapolation algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

9.
We study a linear model of McKendrick‐von Foerster‐Keyfitz type for the temporal development of the age structure of a two‐sex human population. For the underlying system of partial integro‐differential equations, we exploit the semigroup theory to show the classical well‐posedness and asymptotic stability in a Hilbert space framework under appropriate conditions on the age‐specific mortality and fertility moduli. Finally, we propose an implicit finite difference scheme to numerically solve this problem and prove its convergence under minimal regularity assumptions. A real data application is also given. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 706–736, 2016  相似文献   

10.
In this article, we extend the fourth‐order compact boundary scheme in Liao et al. (Numer Methods Partial Differential Equations 18 (2002), 340–354) to a 3D problem and then combine it with the fourth‐order compact alternating direction implicit (ADI) method in Gu et al. (J Comput Appl Math 155 (2003), 1–17) to solve the 3D reaction‐diffusion equation with Neumann boundary condition. First, the reaction‐diffusion equation is solved with a compact fourth‐order finite difference method based on the Padé approximation, which is then combined with the ADI method and a fourth‐order compact scheme to approximate the Neumann boundary condition, to obtain fourth order accuracy in space. The accuracy in the temporal dimension is improved to fourth order by applying the Richardson extrapolation technique, although the unconditional stability of the numerical method is proved, and several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed new algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
This paper studies the Neimark–Sacker bifurcation of a diffusive food‐limited model with a finite delay and Dirichlet boundary condition by the backward Euler difference scheme, Crank‐Nicolson difference scheme, and nonstandard finite‐difference scheme. The existence of Neimark‐Sacker bifurcation at the equilibrium is obtained. Our results show that Crank‐Nicolson and nonstandard finite‐difference schemes are superior to the backward Euler difference scheme under the means of describing approximately the dynamics of the original system. Finally, numerical examples are provided to illustrate the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

13.
We consider the initial value problem for the Klein‐Gordon equation in de Sitter spacetime. We use the central difference scheme on the temporal discretization. We also discretize the spatial variable using the finite element method with implicit and the Crank‐Nicolson schemes for the numerical solution of the initial value problem. In order to show the accuracy for the results of the solutions, we also examine the finite difference methods. We observe that the numerical results obtained by using these methods are compatible.  相似文献   

14.
A competitive nonstandard semi‐explicit finite‐difference method is constructed and used to obtain numerical solutions of the diffusion‐free generalized Nagumo equation. Qualitative stability analysis and numerical simulations show that this scheme is more robust in comparison to some standard explicit methods such as forward Euler and the fourth‐order Runge‐Kutta method (RK4). The nonstandard scheme is extended to construct a semi‐explicit and an implicit scheme to solve the full Nagumo reaction‐diffusion equation. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 363–379, 2003.  相似文献   

15.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
In this paper, we consider the Crank‐Nicolson extrapolation scheme for the 2D/3D unsteady natural convection problem. Our numerical scheme includes the implicit Crank‐Nicolson scheme for linear terms and the recursive linear method for nonlinear terms. Standard Galerkin finite element method is used to approximate the spatial discretization. Stability and optimal error estimates are provided for the numerical solutions. Furthermore, a fully discrete two‐grid Crank‐Nicolson extrapolation scheme is developed, the corresponding stability and convergence results are derived for the approximate solutions. Comparison from aspects of the theoretical results and computational efficiency, the two‐grid Crank‐Nicolson extrapolation scheme has the same order as the one grid method for velocity and temperature in H1‐norm and for pressure in L2‐norm. However, the two‐grid scheme involves much less work than one grid method. Finally, some numerical examples are provided to verify the established theoretical results and illustrate the performances of the developed numerical schemes.  相似文献   

17.
We develop an upwind finite volume (UFV) scheme for unsteady‐state advection‐diffusion partial differential equations (PDEs) in multiple space dimensions. We apply an alternating direction implicit (ADI) splitting technique to accelerate the solution process of the numerical scheme. We investigate and analyze the reason why the conventional ADI splitting does not satisfy maximum principle in the context of advection‐diffusion PDEs. Based on the analysis, we propose a new ADI splitting of the upwind finite volume scheme, the alternating‐direction implicit, upwind finite volume (ADFV) scheme. We prove that both UFV and ADFV schemes satisfy maximum principle and are unconditionally stable. We also derive their error estimates. Numerical results are presented to observe the performance of these schemes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 211–226, 2003  相似文献   

18.
A numerical method based on a predictor–corrector (P‐C) scheme arising from the use of rational approximants of order 3 to the matrix‐exponential term in a three‐time level recurrence relation is applied successfully to the one‐dimensional sine‐Gordon equation, already known from the bibliography. In this P‐C scheme a modification in the corrector (MPC) has been proposed according to which the already evaluated corrected values are considered. The method, which uses as predictor an explicit finite‐difference scheme arising from the second order rational approximant and as corrector an implicit one, has been tested numerically on the single and the soliton doublets. Both the predictor and the corrector schemes are analyzed for local truncation error and stability. From the investigation of the numerical results and the comparison of them with other ones known from the bibliography it has been derived that the proposed P‐C/MPC schemes at least coincide in terms of accuracy with them. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

19.
A backward Euler alternating direction implicit (ADI) difference scheme is formulated and analyzed for the three‐dimensional fractional evolution equation. In our method, the Riemann‐Liouville fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, an ADI technique is adopted to reduce the multidimensional problem to a series of one‐dimensional problems. A fully discrete difference scheme is constructed with space discretization by finite difference method. Two new inner products and corresponding norms are defined to analyze the scheme. The verification of stability and convergence is based on the nonnegative character of the real quadratic form associated with the convolution quadrature. Numerical experiments are reported to demonstrate the efficiency of our scheme.  相似文献   

20.
In this study, we develop a fourth‐order compact finite difference scheme for solving a model of energy exchanges in a generalized N‐carrier system with heat sources and Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for microheat transfer. By using the matrix analysis, the compact finite difference numerical scheme is shown to be unconditionally stable. The accuracy of the solution obtained by the scheme is tested by a numerical example. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号