首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a cholera epidemic model with saturated recovery rate is studied. Backward bifurcation leading to bistability possibly occurs, and global dynamics are shown by compound matrices and geometric approaches. Numerical simulations are presented to illustrate the results. Our results suggest that the basic reproduction number itself is not enough to describe whether cholera will prevail or not when the resources for treatment of infectives are limited and suggest that we should pay more attention to the initial state of cholera. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

We prove a general theorem for nonlinear matrix models of the type used in structured population dynamics that describes the bifurcation that occurs when the extinction equilibrium destabilizes as a model parameter is varied. The existence of a bifurcating continuum of positive equilibria is established, and their local stability is related to the direction of bifurcation. Our theorem generalizes existing theorems found in the literature in two ways. First, it allows for a general appearance of the bifurcation parameter (existing theorems require the parameter to appear linearly). This significantly widens the applicability of the theorem to population models. Second, our theorem describes circumstances in which a backward bifurcation can produce stable positive equilibria (existing theorems allow for stability only when the bifurcation is forward). The signs of two diagnostic quantities determine the stability of the bifurcating equilibrium and the direction of bifurcation. We give examples that illustrate these features.  相似文献   

3.
对一种具有种群动力和非线性传染率的传染病模型进行了研究,建立了具有常数迁入率和非线性传染率βI~pS~q的SI模型.与以往的具有非线性传染率的传染病模型相比,这种模型引入了种群动力,也就是种群的总数不再为常数,因此,该类模型更精确地描述了传染病传播的规律.还讨论了模型的正不变集,运用微分方程稳定性理论分析了模型平衡点的存在性及稳定性,得出了疾病消除平衡点和地方病平衡点的全局渐进稳定的充分条件.进一步的,得出了在某些参数范围内会出现Hopf分支现象,并对上述模型进行了生物学讨论.  相似文献   

4.
The aim of this paper is to study the stability and Hopf bifurcation in a general class of differential equation with nonlocal delayed feedback that models the population dynamics of a two age structured spices. The existence of Hopf bifurcation is firstly established after delicately analyzing the eigenvalue problem of the linearized nonlocal equation. The direction of the Hopf bifurcation and stability of the bifurcated periodic solutions are then investigated by means of center manifold reduction. Subsequently, we apply our main results to explore the spatial‐temporal patterns of the nonlocal Mackey‐Glass equation. We obtain both spatially homogeneous and inhomogeneous periodic solutions and numerically show that the former is stable while the latter is unstable. We also show that the inhomogeneous periodic solutions will eventually tend to homogeneous periodic solutions after transient oscillations and increasing of the immature mobility constant will shorten the transient oscillation time.  相似文献   

5.
We proposed a nutrient-phytoplankton interaction model with a discrete and distributed time delay to provide a better understanding of phytoplankton growth dynamics and nutrient-phytoplankton oscillations induced by delay. Standard linear analysis indicated that delay can induce instability of a positive equilibrium via Hopf bifurcation. We derived the conditions guaranteeing the existence of Hopf bifurcation and tracked its direction and the stability of the bifurcating periodic solutions. We also obtained the sufficient conditions for the global asymptotic stability of the unique positive steady state. Numerical analysis in the fully nonlinear regime showed that the stability of the positive equilibrium is sensitive to changes in delay values under select conditions. Numerical results were consistent with results predicted by linear analysis.  相似文献   

6.
In this paper, a stage‐structured SI epidemic model with time delay and nonlinear incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease‐free equilibrium, and the existence of Hopf bifurcations are established. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease‐free equilibrium is globally asymptotically stable. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We investigate the complex behaviour of a modified Nicholson–Bailey model. The modification is proposed by Hassel and Varley taking into account that interaction between parasitoids is taken in such a way that the searching area per parasitoid is inversely proportional to the m-th power of the population density of parasitoids. Under certain parametric conditions the unique positive equilibrium point of system is locally asymptotically stable. Moreover, it is proved that system undergoes Neimark-Sacker bifurcation for small range of parameters by using standard mathematical techniques of bifurcation theory. In order to control Neimark-Sacker bifurcation, we apply simple feedback control strategy and pole-placement technique which is a modification of OGY method. Moreover, the hybrid control methodology is also implemented for chaos controlling. Numerical simulations are provided to illustrate theoretical discussion.  相似文献   

8.
In this paper, an age‐structured population model with the form of neutral functional differential equation is studied. We discuss the stability of the positive equilibrium by analyzing the characteristic equation. Local Hopf bifurcation results are also obtained by choosing the mature delay as bifurcation parameter. On the center manifold, the normal form of the Hopf bifurcation is derived, and explicit formulae for determining the criticality of bifurcation are theoretically given. Moreover, the global continuation of Hopf bifurcating periodic solutions is investigated by using the global Hopf bifurcation theory of neutral equations. Finally, some numerical examples are carried out to support the main results.  相似文献   

9.
The dynamics of a reaction‐diffusion predator‐prey model with hyperbolic mortality and Holling type II response effect is considered. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and nonhomogeneous periodic solutions through all parameters of the system which are spatially homogeneous. To verify our theoretical results, some numerical simulations are also presented. © 2015 Wiley Periodicals, Inc. Complexity 21: 34–43, 2016  相似文献   

10.
In this paper, we consider a three‐dimensional viral model with delay. We first investigate the linear stability and the existence of a Hopf bifurcation. It is shown that Hopf bifurcations occur as the delay τ passes through a sequence of critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit formulaes that determine the stability, the direction, and the period of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the validity of the main results. Finally, some brief conclusions are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, stability and bifurcation of a two‐dimensional ratio‐dependence predator–prey model has been studied in the close first quadrant . It is proved that the model undergoes a period‐doubling bifurcation in a small neighborhood of a boundary equilibrium and moreover, Neimark–Sacker bifurcation occurs at a unique positive equilibrium. We study the Neimark–Sacker bifurcation at unique positive equilibrium by choosing b as a bifurcation parameter. Some numerical simulations are presented to illustrate theocratical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider a two-dimensional SIS model with vaccination. It is assumed that vaccinated individuals become susceptible again when vaccine loses its protective properties with time. Here the rate at which vaccinated individual move to susceptible class again, depends upon vaccine age and hence it is assumed to be a variable. This SIVS model with treatment exhibits backward bifurcation under certain conditions on treatment which complicate the criteria for the success of the treatment by making it possible to have stable endemic states. We also show how the infectivity and the recovery function affect the existence of backward bifurcation.  相似文献   

13.
A predator–prey system with stage structure for the predator and time delay due to the gestation of the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of a positive equilibrium and two boundary equilibria of the system is discussed, respectively. Further, the existence of a Hopf bifurcation at the positive equilibrium is also studied. By using an iteration technique and comparison argument, respectively, sufficient conditions are derived for the global stability of the positive equilibrium and one of the boundary equilibria of the proposed system. As a result, the threshold is obtained for the permanence and extinction of the system. Numerical simulations are carried out to illustrate the main results.  相似文献   

14.
15.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

16.
In this paper, a delayed reaction–diffusion neural network with Neumann boundary conditions is investigated. By analyzing the corresponding characteristic equations, the local stability of the trivial uniform steady state is discussed. The existence of Hopf bifurcation at the trivial steady state is established. Using the normal form theory and the center manifold reduction of partial function differential equations, explicit formulae are derived to determine the direction and stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A system of delay differential equations is studied which represent a model for four neurons with time delayed connections between the neurons and time delayed feedback from each neuron to itself. The linear stability and bifurcation of the system are studied in a parameter space consisting of the sum of the time delays between the elements and the product of the strengths of the connections between the elements. Meanwhile, the bifurcation set are drawn in the parameter space.  相似文献   

19.
A stochastic differential equation modelling a Marchuk’s model is investigated. The stochasticity in the model is introduced by parameter perturbation which is a standard technique in stochastic population modelling. Firstly, the stochastic Marchuk’s model has been simplified by applying stochastic center manifold and stochastic average theory. Secondly, by using Lyapunov exponent and singular boundary theory, we analyze the local stochastic stability and global stochastic stability for stochastic Marchuk’s model, respectively. Thirdly, we explore the stochastic bifurcation of the stochastic Marchuk’s model according to invariant measure and stationary probability density. Some new criteria ensuring stochastic pitchfork bifurcation and P-bifurcation for stochastic Marchuk’s model are obtained, respectively.  相似文献   

20.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号