首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper deals with a synchronization scheme for two fractional chaotic systems which is applied in image encryption. Based on Pecora and Carroll (PC) synchronization, fractional-order Lorenz-like system forms a master–slave configuration, and the sufficient conditions are derived to realize synchronization between these two systems via the Laplace transformation theory. An image encryption algorithm is introduced where the original image is encoded by a nonlinear function of a fractional chaotic state. Simulation results show that the original image is well masked in the cipher texts and recovered successfully through chaotic signals. Further, the cryptanalysis is conducted in detail through histogram, information entropy, key space and sensitivity to verify the high security.  相似文献   

2.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

3.
This paper presents a new hyper-chaotic system obtained by adding a nonlinear controller to the third equation of the three-dimensional autonomous Chen–Lee chaotic system. Computer simulations demonstrated the hyper-chaotic dynamic behaviors of the system. Numerical results revealed that the new hyper-chaotic system possesses two positive exponents. It was also found that the structure of the hyper-chaotic attractors is more complex than those of the Chen–Lee chaotic system. Furthermore, the hybrid projective synchronization (HPS) of the new hyper-chaotic systems was studied using a nonlinear feedback control. The nonlinear controller was designed according to Lyapunov’s direct method to guarantee HPS, which includes synchronization, anti-synchronization, and projective synchronization. Numerical examples are presented in order to illustrate HPS.  相似文献   

4.
In this paper, a hybrid control based on pulse width modulator (PWM) is proposed to synchronize a class of master–slave chaotic systems with uncertainties. We use the Genetic Algorithm (GA) together with fuzzy logic to tune the switching time of PWM mode controller such that the output response of master–slave chaotic system can be synchronized. Finally, an example, uncertain master–slave Duffing–Holmes chaos system, is proposed to show the proposed method’s effectiveness for chaotic synchronization.  相似文献   

5.
The two-parameter phase space in certain nonlinear system is investigated and the chaotic region of parameters are measured to show its chaotic properties. Within the chaotic parameter region, the complete synchronization, phase synchronization and parameters estimation are discussed in detail by using adaptive synchronization scheme and Lyapunov stability theory. Two changeable gain coefficients are introduced into the controllable positive Lyapunov function and thus the parameter observers. It is found that complete synchronization or phase synchronization occurs with different controllers being used though the parameter observers are the same. Phase synchronization is observed when zero eigenvalue of Jacobi matrix, which is composed of the errors of corresponding variables in the drive and driven chaotic systems. The optimized selection of controllers can induce transition of phase synchronization and complete synchronization.  相似文献   

6.
不确定混沌系统的混合投影同步   总被引:1,自引:1,他引:0  
贾贞  陆君安  邓光明 《数学杂志》2011,31(2):275-283
本文研究了一类不确定混沌(超混沌)系统的混合投影问题.利用自适应方法和Lyapunov稳定性理论,获得了两个恒同或不同混沌系统实现混沌投影同步的一般方法.最后,数值仿真的结果验证了方法的有效性和鲁棒性.  相似文献   

7.
Song Zheng 《Complexity》2015,21(2):333-341
This article investigates the function projective synchronization (FPS) for a class of time‐delay chaotic system via nonlinear adaptive‐impulsive control. To achieve the FPS, suitable nonlinear continuous and impulsive controllers are designed based on adaptive control theory and impulsive control theory. Using the generalized Babarlat's lemma, a general condition is given to ensure the FPS. Here, the time‐delay chaotic system is assumed to satisfy the Lipschitz condition while the Lipschitz constants are estimated by augmented adaptation equations. Numerical simulation results are also presented to verify the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 333–341, 2015  相似文献   

8.
In this paper the dual synchronization of chaotic systems via output feedback strategy is investigated. The slave chaotic systems are fed by a scalar signal generated by a linear combination of the master systems state variables. The sufficient condition and design procedure for dual synchronization are presented. The proposed method is applied for dual synchronization of the Lorenz–Rossler, Rossler–Chen and Duffing–Van der Pol chaotic systems through computer simulation. The results show the effectiveness and feasibility of the proposed algorithm.  相似文献   

9.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

10.
This work presents chaos synchronization between two different chaotic systems via nonlinear feedback control. On the basis of a converse Lyapunov theorem and balanced gain scheme, control gains of controller are derived to achieve chaos synchronization for the unified chaotic systems. Numerical simulations are shown to verify the results.  相似文献   

11.
随着物理与技术的深入研究,分数阶非线性系统的动力性态及其分数阶混沌系统的同步成为研究的焦点.研究了分数阶Duffing系统的动力性态包括混沌性质,并且由分数阶非线性稳定性准则得到了分数阶非自治系统的混沌同步.特别地,研究了由单一主动控制的分数阶Duffing系统的同步.相应的数值结果演示了方法的有效性.  相似文献   

12.
This study demonstrates that synchronization and anti-synchronization can coexist in Chen–Lee chaotic systems by direct linear coupling. Based on Lyapunov’s direct method, a linear controller was designed to assure that two different types of synchronization can simultaneously be achieved. Further, the hybrid projective synchronization of Chen–Lee chaotic systems was studied using a nonlinear control scheme. The nonlinear controller was designed according to the Lyapunov stability theory to guarantee the hybrid projective synchronization, including synchronization, anti-synchronization, and projective synchronization. Finally, numerical examples are presented in order to illustrate the proposed synchronization approach.  相似文献   

13.
In this paper, designing an appropriate linear and nonlinear feedback control, the two identical integer order chaotic systems are synchronized by analytically and numerically. It has been realizing that, synchronization using linear feedback control method is efficient than nonlinear feedback control method due to the less computational complexity and the synchronization error. ElGamal public key cryptosystem is described through the proposed Diffie–Hellman key exchange protocol based on the synchronized chaotic systems using linear feedback control and their security are analyzed. The numerical simulations are given to validate the correctness of the proposed synchronization of chaotic systems and the ElGamal cryptosystem.  相似文献   

14.
We present a new scheme for the secured transmission of information based on master–slave synchronization of chaotic systems, using unknown-input observers. Our approach improves upon state-of-the-art schemes by being compatible with information of relatively large amplitude while improving security against intruders through an intricate encryption system. In addition, our approach is robust to channel noise. The main idea is to separate the encryption and synchronization operations by using two cascaded chaotic systems in the transmitter. Technically, the scheme is based on smooth adaptive unknown-input observers; these have the advantage to estimate the (master) states and to reconstruct the unknown inputs simultaneously. The performance of the communication system is illustrated in numerical simulation.  相似文献   

15.
This paper addresses the adaptive synchronization problem of the drive–driven type chaotic systems via a scalar transmitted signal. Given certain structural conditions of chaotic systems, an adaptive observer-based driven system is constructed to synchronize the drive system whose dynamics are subjected to the system’s disturbances and/or some unknown parameters. By appropriately selecting the observer gains, the synchronization and stability of the overall systems can be guaranteed by the Lyapunov approach. Two well-known chaotic systems: Rössler-like and Chua’s circuit are considered as illustrative examples to demonstrate the effectiveness of the proposed scheme. Moreover, as an application, the proposed scheme is then applied to a secure communication system whose process consists of two phases: the adaptation phase in which the chaotic transmitter’s disturbances are estimated; and the communication phase in which the information signal is transmitted and then recovered on the basis of the estimated parameters. Simulation results verify the proposed scheme’s success in the communication application.  相似文献   

16.
For a chaotic system, a control scheme is presented, based on the back-propagation neural network (BPNN). The scheme can control the chaotic response to a prospective external signal, which can be periodic, nonlinear or even a non-analytical discontinuous function. For a chaotic system with high dimensions, each variable can be controlled for the different signals. For Lorenz, Rossler and Duffing systems, simulations are carried out and the proposed scheme is proved to be effective within a short control time.  相似文献   

17.
In this paper, the analytical conditions for a periodically forced Duffing oscillator synchronized with a chaotic pendulum are developed through the theory of discontinuous dynamical systems. From the analytical conditions, the synchronization invariant domains are developed. For a better understanding of synchronization of two different dynamical systems, the partial and full synchronizations of the Duffing oscillator with the chaotic pendulum are presented for illustrations. The control parameter map is developed from the analytical conditions. Under special parameters, the two systems can be fully and partially synchronized. Since the forced pendulum has librational and rotational chaotic motions, the periodically forced Duffing oscillator can be synchronized only with the librational chaotic motions of the pendulum. It is impossible for the forced Duffing oscillator to be synchronized with the rotational chaotic motions.  相似文献   

18.
Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non‐identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed‐loop system for both identical and non‐identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379–386, 2015  相似文献   

19.
In this paper, the chaotic synchronization of the Duffing oscillator and controlled pendulum is investigated. From the analytical conditions developed in [1], the partial and full synchronizations of the controlled pendulum with chaotic motions in the Duffing oscillator are discussed. Compared with the periodic synchronization, in the chaotic synchronization, switching points for appearance and vanishing of the partial synchronization are chaotic. The control parameter map for the synchronization is developed from the analytical conditions, and the partial and full synchronizations are illustrated to show the analytical conditions. This synchronization is different from the controlled Duffing oscillator synchronizing with chaotic motion in the periodically excited pendulum. For a better understanding of synchronization characteristics between two different dynamical systems, effects with other parameters will be discussed later.  相似文献   

20.
An adaptive controller for stabilization of unknown unstable steady states (spirals, nodes and saddles) of nonlinear dynamical systems is considered and its robustness under the changes of the location of the fixed point in the phase space is demonstrated. An analog electronic controller, based on a low-pass filter technique, is described. It can be easily switched between a stable and an unstable mode of operation for stabilizing either spirals/nodes or saddles, respectively. Numerical and experimental results for two autonomous systems, the damped Duffing–Holmes oscillator and the chaotic Lorenz system, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号